Abstract:
A network-based method for managing locks in a shared file system (SFS) for a group of hosts that does not require any configuration to identify a server for managing locks for the SFS. Each host in the group carries out the steps of checking a predetermined storage location to determine whether there is a host ID written in the predetermined location. If there is no host ID written in the predetermined location, the first host to notice this condition writes its host ID in the predetermined location to identify itself as the server for managing locks. If there is a host ID written in the predetermined location, the host ID of the server for managing locks is maintained in local memory. When the host needs to perform IO operations on a file of the SFS, it communicates with the server for managing locks over the network using the host ID of the server for managing locks to obtain a lock to the file.
Abstract:
Decentralized deduplication operations in a computer system employ a hash index that is a variant of a B+ tree to support both efficient sequential updates as well as efficient random updates. Sequential update is selected when deduplication is infrequently performed, such as on the order of days, and random update is selected when deduplication is performed more frequently, such as on the order of seconds. More frequent deduplication may be beneficial during periods when large amounts of temporary duplicate data are created, and the system may not have enough storage space to accommodate the temporary spike in demand.
Abstract:
Multiple servers sharing a distributed file system are used to perform copies of regions of a source file in parallel from a source storage unit to corresponding temporary files at a destination storage unit. These temporary files are then merged or combined into a single file at the destination storage unit in a way that preserves the inode structure and attributes of the source file. A substantial speedup is obtained by copying regions of the file in parallel.
Abstract:
A method of acquiring a lock by a node, on a shared resource in a system of a plurality of interconnected nodes, is disclosed. Each node that competes for a lock on the shared resource maintains a list of locks currently owned by the node. A lock metadata is maintained on a shared storage that is accessible to all nodes that may compete for locks on shared resources. A heartbeat region is maintained on a shared resource corresponding to each node so nodes can register their liveness. A lock state is maintained in the lock metadata in the shared storage. A lock state may indicate lock held exclusively, lock free or lock in managed mode. If the lock is held in the managed mode, the ownership of the lock can be transferred to another node without a use of a mutual exclusion primitive such as the SCSI reservation.