摘要:
It has now been discovered that certain mutant forms of pro-urokinase (“pro-UK”), such as so-called pro-UK mutant “M5” (Lys300→His), perform in the manner of pro-UK in lysing “bad” blood clots (those clots that occlude blood vessels), while sparing hemostatic fibrin in the so-called “good” blood clots (those clots that seal wounds, e.g., after surgery or other tissue injury). Thus, these pro-UK mutants are excellent and safe thrombolytic agents. These advantages allow them to be used in a variety of new methods, devices, and compositions useful for thrombolysis and treating various cardiovascular disorders in clinical situations where administration of other known thrombolytic agents has been too risky or even contraindicated.
摘要:
It has now been discovered that certain mutant forms of pro-urokinase (“pro-UK”), such as so-called pro-UK mutant “M5” (Lys300→His), perform in the manner of pro-UK in lysing “bad” blood clots (those clots that occlude blood vessels), while sparing hemostatic fibrin in the so-called “good” blood clots (those clots that seal wounds, e.g., after surgery or other tissue injury). Thus, these pro-UK mutants are excellent and safe thrombolytic agents. These advantages allow them to be used in a variety of new methods, devices, and compositions useful for thrombolysis and treating various cardiovascular disorders in clinical situations where administration of other known thrombolytic agents has been too risky or even contraindicated.
摘要:
It has now been discovered that certain mutant forms of pro-urokinase (“pro-UK”), such as so-called pro-UK mutant “M5” (Lys.sup.300.fwdarw.His)-, perform in the manner of pro-UK in lysing “bad” blood clots (those clots that occlude blood vessels), while sparing hemostatic fibrin in the so-called “good” blood clots (those clots that seal wounds, e.g., after surgery or other tissue injury). Thus, these pro-UK mutants are excellent and safe thrombolytic agents. These advantages allow them to be used in a variety of new methods, devices, and compositions useful for thrombolysis and treating various cardiovascular disorders in clinical situations where administration of other known thrombolytic agents has been too risky or even contraindicated.
摘要:
It has now been discovered that certain mutant forms of pro-urokinase (“pro-UK”), such as so-called pro-UK mutant “M5” (Lys.sup.300.fwdarw.His)-, perform in the manner of pro-UK in lysing “bad” blood clots (those clots that occlude blood vessels), while sparing hemostatic fibrin in the so-called “good” blood clots (those clots that seal wounds, e.g., after surgery or other tissue injury). Thus, these pro-UK mutants are excellent and safe thrombolytic agents. These advantages allow them to be used in a variety of new methods, devices, and compositions useful for thrombolysis and treating various cardiovascular disorders in clinical situations where administration of other known thrombolytic agents has been too risky or even contraindicated.
摘要:
It has now been discovered that certain mutant forms of pro-urokinase (“pro-UK”), such as so-called pro-UK mutant “M5” (Lys.sup.300.fwdarw.His)-, perform in the manner of pro-UK in lysing “bad” blood clots (those clots that occlude blood vessels), while sparing hemostatic fibrin in the so-called “good” blood clots (those clots that seal wounds, e.g., after surgery or other tissue injury). Thus, these pro-UK mutants are excellent and safe thrombolytic agents. These advantages allow them to be used in a variety of new methods, devices, and compositions useful for thrombolysis and treating various cardiovascular disorders in clinical situations where administration of other known thrombolytic agents has been too risky or even contraindicated.
摘要:
The invention relates to thrombolytically active pro-urokinase (pro-UK) mutants comprising the amino acid sequence of native pro-UK, but including a mutation which causes the pro-UK mutants to induce less fibrinogenolysis and non-specific plasminogen activation than native pro-UK, to have at least a 10-fold lower intrinsic activity than native pro-UK, and to have substantially the same fibrin promotion and thrombolytic activity after plasmin activation compared to native pro-UK when administered to a patient.
摘要:
A mutant prourokinase plasminogen activator (M5) was developed to make prouPA less subject to spontaneous conversion to tcuPA in blood at therapeutic concentrations. Two-chain M5 was shown to form complexes with C1-inhibitor, which was the principal inhibitor of tcM5 in plasma. The effect of supplemental additions of C1-inhibitor on fibrinolysis and fibrinogenolysis by M5 was determined. Supplemental C1-inhibitor restored the stability of high-dose M5 and prevented fibrinogenolysis but not fibrinolysis, the rate of which was not compromised by the inhibitor. Due to higher dose tolerance of M5 in the presence of supplemental C1-inhibitor, the rate of fibrin-specific lysis reached that achievable by nonspecific fibrinolysis, which is the maximum possible for a plasminogen activator. Plasma C1-inhibitor stabilized M5 in plasma by inhibiting tcM5 which would otherwise greatly amplify non-specific plasminogen activation causing more tcM5 generation from M5. This unusual dissociation of inhibitory effects, whereby fibrinogenolysis and not fibrinolysis is inhibited, has significant implications for improving the safety and efficacy of fibrinolysis. Methods of reducing bleeding and non-specific plasminogen activation during fibrinolysis by administering M5 along with exogenous C1-inhibitor are disclosed.
摘要:
The existence of high fibrin-affinity urokinase is discovered by an isolation procedure using fibrin precipitated on an adsorptive-solid matrix. By the method described, the high affinity form of plasminogen activator can be isolated directly from urine or from kidney tissue culture medium. The method is economical and provides a relatively high yield of the activator. The high affinity that this plasminogen activator has for fibrin is a property that makes it an improved thrombolytic agent and when radiolabelled provides a new diagnostic agent for the specific detection of fibrin thrombi through nuclear scanning. The newly-isolated plasminogen activator has the following characteristics: a molecular weight of about 56,000 Daltons, a specific activity of about 40,000-50,000 CTA units/mg, the appearance of a single chain structure and a high affinity for fibrin.
摘要:
A mutant prourokinase plasminogen activator (M5) was developed to make prouPA less subject to spontaneous activation during fibrinolysis. C1-inhibitor complexes with tcM5. The effect of C1-inhibitor on fibrinolysis and fibrinogenolysis by M5 was determined. Supplemental C1-inhibitor restores the stability of M5 but not that of prouPA. Clot lysis by M5 with supplemental C1-inhibitor showed no attenuation of the rate of fibrinolysis, whereas fibrinogenolysis was prevented by C1-inhibitor. Due to higher dose tolerance of M5 with C1-inhibitor, the rate of fibrin-specific lysis reached that achievable by nonspecific fibrinolysis without inhibitor. Plasma C1-inhibitor stabilized M5 in plasma by inhibiting tcM5 and thereby non-specific plasminogen activation. At the same time, fibrin-specific plasminogen activation remained unimpaired. This unusual dissociation of effects has significant implications for improving the safety and efficacy of fibrinolysis. Methods of reducing bleeding and non-specific plasminogen activation during fibrinolysis by administering M5 along with exogenous C1-inhibitor are disclosed.
摘要:
A mutant prourokinase plasminogen activator (M5) was developed to make prouPA less subject to spontaneous activation during fibrinolysis. C1-inhibitor complexes with tcM5. The effect of C1-inhibitor on fibrinolysis and fibrinogenolysis by M5 was determined. Supplemental C1-inhibitor restores the stability of M5 but not that of prouPA. Clot lysis by M5 with supplemental C1-inhibitor showed no attenuation of the rate of fibrinolysis, whereas fibrinogenolysis was prevented by C1-inhibitor. Due to higher dose tolerance of M5 with C1-inhibitor, the rate of fibrin-specific lysis reached that achievable by nonspecific fibrinolysis without inhibitor. Plasma C1-inhibitor stabilized M5 in plasma by inhibiting tcM5 and thereby non-specific plasminogen activation. At the same time, fibrin-specific plasminogen activation remained unimpaired. This unusual dissociation of effects has significant implications for improving the safety and efficacy of fibrinolysis. Methods of reducing bleeding and non-specific plasminogen activation during fibrinolysis by administering M5 along with exogenous C1-inhibitor are disclosed.