摘要:
The present invention is directed to novel nucleotide sequences to be used for diagnosis, identification of the strain, typing of the strain and giving orientation to its potential degree of virulence, infectivity and/or latency for all infectious diseases more particularly tuberculosis. The present invention also includes method for the identification and selection of polymorphisms associated with the virulence' and/or infectivity in infectious diseases more particularly in tuberculosis by a comparative genomic analysis of the sequences of different clinical isolates/strains of infectious organisms. The regions of polymorphisms, can also act as potential drug targets and vaccine targets. More particularly, the invention also relates to identifying virulence factors of M. tuberculosis strains and other infectious organisms to be included in a diagnostic DNA chip allowing identification of the strain, typing of the strain and finally giving orientation to its potential degree of virulence. Although the present invention has been illustrated with specific reference to the polymorphic region in the Mycobacterium tuberculosis, the said invention is not to be understood and construed as being limited to Tuberculosis but is applicable to all infectious diseases.
摘要:
The present invention is directed to novel Ethanoic acid derivatives which are inhibitors of the dipeptidyl peptidase-IV enzyme (“DPP-IV inhibitors”) and which are useful in the treatment or prevention of diseases in which the dipeptidyl peptidase-IV enzyme is involved, particularly in the treatment of type 2 diabetes and conditions that are associated with the same. In addition, the present invention provides pharmaceutical compositions useful in inhibiting DPP-IV enzyme, comprising a therapeutically effective amount of Ethanoic acid derivatives. Moreover, the present invention provides a method of inhibiting DPP-IV comprising administering to a mammal in need of such treatment a therapeutically effective amount of a single or a combination of Ethanoic acid derivatives of the invention. The invention further relates to the kits and other articles of manufacture for treating disease states associated with DPP-IV enzyme. The invention further relates to a method of identifying a compound that has dipeptidyl peptidase-IV enzyme inhibition activity, comprising following steps: 1. Define the residues of the active site of DPP-IV 2. Define the geometry and force field relationship of the residues identified above in (1) 3. Define the physical parameters of the active site identified in (1) 4. Validate the model based on mutational analysis and in-vitro inhibitor binding studies 5. Screen the library for scaffolds and small molecules that satisfy the model developed in (3) and validated in (4) above. 6. Dock each inhibitor identified in (5) above to the active site of DPP-IV defined in (1). 7. Minimize the energy of the inhibitor and DPP-IV complex using force fields used in (2) above. 8. Compare the energy of interaction of each inhibitor to that of known inhibitors. 9. Synthesize and validate in in-vitro assays
摘要:
The present invention is directed to novel heptanoic acid derivatives which are inhibitors of the dipeptidyl peptidase-IV enzyme (“DPP-IV inhibitors”) and which are useful in the treatment or prevention of diseases in which the dipeptidyl peptidase-IV enzyme is involved, particularly in the treatment of type 2 diabetes and conditions that are associated with the same. In addition, the present invention provides pharmaceutical compositions useful in inhibiting DPP-IV enzyme, comprising a therapeutically effective amount of heptanoic acid derivatives. Moreover, the present invention provides a method of inhibiting DPP-IV comprising administering to a mammal in need of such treatment a therapeutically effective amount of a single or a combination of heptanoic acid derivatives of the invention. The invention further relates to the kits and other articles of manufacture for treating disease states associated with DPP-IV enzyme. The invention further relates to a method of identifying a compound that has dipeptidyl peptidase-IV enzyme inhibition activity, comprising following steps: 1. Define the residues of the active site of DPP-IV 2. Define the geometry and force field relationship of the residues identified above in (1) 3. Define the physical parameters of the active site identified in (I) 4. Validate the model based on mutational analysis and in-vitro inhibitor binding studies 5. Screen the library for scaffolds and small molecules that satisfy the model developed in (3) and validated in (4) above. 6. Dock each inhibitor identified in (5) above to the active site of DPP-IV defined in (I). 7. Minimize the energy of the inhibitor and DPP-IV complex using force fields used in (2) above. 8. Compare the energy of interaction of each inhibitor to that of known inhibitors. 9. Synthesize and validate in in-vitro assays
摘要:
The present invention relates to the induction of the endogenous MnSOD expression in the Chloroplast which is ravages by reactive oxygen species ain one or more compartments of the plant cells and provides the means and wherewithal of cultivating crops in areas where it would not otherwise grow normally on account of environmental stress conditions inclusive of high and low temperatures, drought and ultra violet light, is resistant to herbicides thereby resulting in an increase in yield and also improved crop quality.
摘要:
This invention relates to a process for constructing DNA-based molecular markers in plants comprising: identifying and selecting the gene sequences relating to stress from available database and literature; submitting the selected gene sequence for similarity search to obtain other sequences from the database similar to the selected gene sequence; subjecting the sequences obtained from similarity search to multiple alignment; removing redundant sequences if any, to get a data set of proteins involved in biotic and abiotic stress response; picking blocks or motifs from the data set of proteins on basis of statistical significance; subjecting the data set of proteins to Blockmaker to pick the same set of blocks or motifs; analysing the motifs for the functionality.
摘要:
The present invention is directed to novel hexanoic acid derivatives which are inhibitors of the dipeptidyl peptidase-IV enzyme (“DPP-IV inhibitors”) and which are useful in the treatment or prevention of diseases in which the dipeptidyl peptidase-IV enzyme is involved, particularly in the treatment of type 2 diabetes and conditions that are associated with the same. In addition, the present invention provides pharmaceutical compositions useful in inhibiting DPP-IV enzyme, comprising a therapeutically effective amount of hexanoic acid derivatives. Moreover, the present invention provides a method of inhibiting DPP-IV comprising administering to a mammal in need of such treatment a therapeutically effective amount of a single or a combination of hexanoic acid derivatives of the invention. The invention further relates to the kits and other articles of manufacture for treating disease states associated with DPP-IV enzyme. The invention further relates to a method of identifying a compound that has dipeptidyl peptidase-IV enzyme inhibition activity, comprising following steps: 1. Define the residues of the active site of DPP-IV 2. Define the geometry and force field relationship of the residues identified above in (I) 3. Define the physical parameters of the active site identified in (1) 4. Validate the model based on mutational analysis and in-vitro inhibitor binding studies 5. Screen the library for scaffolds and small molecules that satisfy the model developed in (3) and validated in (4) above. 6. Dock each inhibitor identified in (5) above to the active site of DPP-IV defined in (1). 7. Minimize the energy of the inhibitor and DPP-IV complex using force fields used in (2) above. 8. Compare the energy of interaction of each inhibitor to that of known inhibitors. 9. Synthesize and validate in in-vitro assays
摘要:
The present invention relates to an isolated nucleic acid sequence AGT-SAL 11 encoding polypeptides which confers salt tolerance on plants and other organisms.
摘要:
The present invention is directed to novel nananoic acid derivatives which are inhibitors of the dipeptidyl peptidase-IV enzyme (“DPP-IV inhibitors”) and which are useful in the treatment or prevention of diseases in which the dipeptidyl peptidase-IV enzyme is involved, particularly in the treatment of type 2 diabetes and conditions that are associated with the same. In addition, the present invention provides pharmaceutical compositions useful in inhibiting DPP-IV enzyme, comprising a therapeutically effective amount of nananoic acid derivatives. Moreover, the present invention provides a method of inhibiting DPP-IV comprising administering to a mammal in need of such treatment a therapeutically effective amount of a single or a combination of nananoic acid derivatives of the invention. The invention further relates to the kits and other articles of manufacture for treating disease states associated with DPP-IV enzyme. The invention further relates to a method of identifying a compound that has dipeptidyl peptidase-IV enzyme inhibition activity, comprising following steps: 1. Define the residues of the active site of DPP-IV 2. Define the geometry and force field relationship of the residues identified above in (1) 3. Define the physical parameters of the active site identified in (1) 4. Validate the model based on mutational analysis and in-vitro inhibitor binding studies 5. Screen the library for scaffolds and small molecules that satisfy the model developed in (3) and validated in (4) above. 6. Dock each inhibitor identified in (5) above to the active site of DPP-IV defined in (1). 7. Minimize the energy of the inhibitor and DPP-IV complex using force fields used in (2) above. 8. Compare the energy of interaction of each inhibitor to that of known inhibitors. 9. Synthesize and validate in in-vitro assays