摘要:
Antibiotics 10-dihydrosteffimycin (U-58,875), and 10-dihydrosteffimycin B (U-58,874) are produced by carbon 10 ketonic carbonyl reduction in fermentation processes using the known antibiotics steffimycin and steffimycin B, respectively, as starting materials. These novel antibiotics are active against various microorganisms, for example, Bacillus subtilis, Bacillus cereus, Sarcina lutea, Streptococcus pyogenes, and Mycobacterium avium. Thus, these antibiotics can be used to inhibit the growth of the above microorganisms in various environments.
摘要:
Antibiotics 10-dihydrosteffimycin (U-58,875), and 10-dihydrosteffimycin B (U-58,874) are produced by carbon 10 ketonic carbonyl reduction in fermentation processes using the known antibiotics steffimycin and steffimycin B, respectively, as starting materials. These novel antibiotics are active against various microorganisms, for example, Bacillus subtilis, Bacillus cereus, Sarcina lutea, Streptococcus pyogenes, and Mycobacterium avium. Thus, these antibiotics can be used to inhibit the growth of the above microorganisms in various environments.
摘要:
Bioconversion of the antibiotic steffimycinone to the antibiotic steffimycinol. Steffimycinol is active against various microorganisms, for example, Bacillus subtilis, Mycobacterium avium and Streptococcus pyogenes. Steffimycinol is converted to 7-deoxysteffimycinol by a microaerophilic Aeromonas hydrophila fermentation. 7-Deoxysteffimycinol is active against Sarcina lutea, Bacillus cereus, and B. subtilis. Thus, these antibiotics can be used to inhibit the growth of the above microorganisms in various environments.
摘要:
Bioconversion of the antibiotic steffimycinone to the antibiotic steffimycinol. Steffimycinol is active against various microorganisms, for example, Bacillus subtilis, Mycobacterium avium and Streptococcus pyogenes. Steffimycinol is converted to 7-deoxysteffimycinol by a microaerophilic Aeromonas hydrophila fermentation. 7-Deoxysteffimycinol is active against Sarcina lutea, Bacillus cereus, and B. subtilis. Thus, these antibiotics can be used to inhibit the growth of the above microorganisms in various environments.
摘要:
Bioconversion of the antibiotic steffimycinone to the antibiotic steffimycinol. Steffimycinol is active against various microorganisms, for example, Bacillus subtilis, Mycobacterium avium and Streptococcus pyogenes. Steffimycinol is converted to 7-deoxysteffimycinol by a microaerophilic Aeromonas hydrophila fermentation. 7-Deoxysteffimycinol is active against Sarcina lutea, Bacillus cereus, and B. subtilis. Thus, there antibiotics can be used to inhibit the growth of the above microorganisms in various environments.
摘要:
The invention concerns a novel nogamycin having a heretofore unknown configuration and novel analogs which are active against various microorganisms. The invention also includes novel methods of making substituted and unsubstituted nogamycin having an essentially pure isomeric form of a preferred configuration.
摘要:
Novel and useful antibiotics designated 273a.sub.1.spsb..alpha. and 273a.sub.1.spsb..beta. can be produced in a fermentation using Streptomyces paulus, strain 273, NRRL 12251. These antibiotics are active against various Gram-positive bacteria. Also, these antibiotics are, advantageously, soluble in aqueous solutions.
摘要:
Novel N-demethyl derivatives of nogalamycin and process for preparing the same. The compounds of this invention are active against various microorganisms.
摘要:
Antibiotics steffimycinol and 7-deoxysteffimycinol produced by reduction of the antibiotic steffimycinone. Steffimycinol is active against various microorganisms, for example, Bacillus subtilis, Mycobacterium avium and Streptococcus pyogenes; 7-deoxysteffimycinol is active against Sarcina lutea, Bacillus cereus, and B. subtilis. Thus, these antibiotics can be used to inhibit the growth of the above microorganisms in various environments.
摘要:
Novel antibiotic, nogamycin (U-51,204) prepared chemically from nogalamycinic acid. Nogamycin is active against various microorganisms, for example, Mycobacterium avium, Bacillus subtilis, Lactobacillus casei, Staphylococcus aureus, and Sarcina lutea. Thus, nogamycin can be used to inhibit the growth of the above microorganisms in various environments.