摘要:
Novel and useful antibiotics designated 273a.sub.1.spsb..alpha. and 273a.sub.1.spsb..beta. can be produced in a fermentation using Streptomyces paulus, strain 273, NRRL 12251. These antibiotics are active against various Gram-positive bacteria. Also, these antibiotics are, advantageously, soluble in aqueous solutions.
摘要:
Novel and useful ribonucleotides of analogs of the well known antibiotics lincomycin and clindamycin. These ribonucleotides are unexpectedly highly active against Streptococcus hemolyticus and Staphylococcus aureus in vivo. These ribonucleotides are prepared by using resting cell or cell-free extracts of Streptomyces rochei, NRRL 3533, or cell-free extracts of Streptomyces coelicolor, NRRL 3532.
摘要:
Disclosed and claimed is an improved fermentation process for preparing the known antibiotic U-43,120, herein referred to as paulomycin. Also disclosed and claimed are the novel and useful antibiotics paulomycin A and paulomycin B.
摘要:
Antibiotics 10-dihydrosteffimycin (U-58,875), and 10-dihydrosteffimycin B (U-58,874) are produced by carbon 10 ketonic carbonyl reduction in fermentation processes using the known antibiotics steffimycin and steffimycin B, respectively, as starting materials. These novel antibiotics are active against various microorganisms, for example, Bacillus subtilis, Bacillus cereus, Sarcina lutea, Streptococcus pyogenes, and Mycobacterium avium. Thus, these antibiotics can be used to inhibit the growth of the above microorganisms in various environments.
摘要:
Bioconversion of the antibiotic steffimycinone to the antibiotic steffimycinol. Steffimycinol is active against various microorganisms, for example, Bacillus subtilis, Mycobacterium avium and Streptococcus pyogenes. Steffimycinol is converted to 7-deoxysteffimycinol by a microaerophilic Aeromonas hydrophila fermentation. 7-Deoxysteffimycinol is active against Sarcina lutea, Bacillus cereus, and B. subtilis. Thus, these antibiotics can be used to inhibit the growth of the above microorganisms in various environments.
摘要:
Bioconversion of the antibiotic steffimycinone to the antibiotic steffimycinol. Steffimycinol is active against various microorganisms, for example, Bacillus subtilis, Mycobacterium avium and Streptococcus pyogenes. Steffimycinol is converted to 7-deoxysteffimycinol by a microaerophilic Aeromonas hydrophila fermentation. 7-Deoxysteffimycinol is active against Sarcina lutea, Bacillus cereus, and B. subtilis. Thus, these antibiotics can be used to inhibit the growth of the above microorganisms in various environments.
摘要:
Bioconversion of the antibiotic steffimycinone to the antibiotic steffimycinol. Steffimycinol is active against various microorganisms, for example, Bacillus subtilis, Mycobacterium avium and Streptococcus pyogenes. Steffimycinol is converted to 7-deoxysteffimycinol by a microaerophilic Aeromonas hydrophila fermentation. 7-Deoxysteffimycinol is active against Sarcina lutea, Bacillus cereus, and B. subtilis. Thus, there antibiotics can be used to inhibit the growth of the above microorganisms in various environments.
摘要:
Antibiotics 10-dihydrosteffimycin (U-58,875), and 10-dihydrosteffimycin B (U-58,874) are produced by carbon 10 ketonic carbonyl reduction in fermentation processes using the known antibiotics steffimycin and steffimycin B, respectively, as starting materials. These novel antibiotics are active against various microorganisms, for example, Bacillus subtilis, Bacillus cereus, Sarcina lutea, Streptococcus pyogenes, and Mycobacterium avium. Thus, these antibiotics can be used to inhibit the growth of the above microorganisms in various environments.
摘要:
This invention concerns a method for killing internal parasites, especially nematodes, trematodes and cestodes affecting warm blooded animals such as sheep, cattle, swine, goats, dogs, cats, horses and humans as well as poultry by administering an effective amount of dioxapyrrolomycin of the formula I. Anthelmintic compositions of dioxapyrrolomycin and an improvement in the process of preparation of dioxapyrrolomycin are also provided. ##STR1##