Abstract:
The measuring system comprises: A measuring transducer of vibration-type, through which medium flows during operation and which produces primary signals corresponding to parameters, especially a mass flow rate, a density and/or a viscosity, of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for activating the measuring transducer and for evaluating primary signals delivered by the measuring transducer. The measuring transducer includes at least one measuring tube for conveying flowing medium; at least one electro-mechanical, oscillation exciter for exciting and/or maintaining vibrations of the at least one measuring tube, a first oscillation sensor for registering inlet-side vibrations at least of the at least one measuring tube and for producing a first primary signal of the measuring transducer representing vibrations at least of the at least one measuring tube, and a second oscillation sensor for registering outlet-side vibrations at least of the at least one measuring tube and for producing a second primary signal of the measuring transducer representing vibrations at least of the at least one measuring tube. The transmitter electronics, in turn, delivers at least one driver signal for the oscillation exciter for effecting vibrations of the at least one measuring tube and generates, by means of the first primary signal and by means of the second primary signal, as well as with application of a Reynolds number, measured value representing a Reynolds number, Re, for medium flowing in the measuring transducer, a pressure difference, measured value, which represents a pressure difference occurring between two predetermined reference points in the flowing medium.
Abstract:
The measuring system comprises: A measuring transducer of vibration-type, through which medium flows during operation and which produces primary signals corresponding to parameters of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for activating the measuring transducer and for evaluating primary signals delivered by the measuring transducer. The measuring transducer includes: At least one measuring tube for conveying flowing medium; at least one electro-mechanical, oscillation exciter for exciting and/or maintaining vibrations of the at least one measuring tube; as well as at least a first oscillation sensor for registering vibrations at least of the at least one measuring tube and for producing a first primary signal of the measuring transducer representing vibrations at least of the at least one measuring tube. The transmitter electronics, in turn, delivers at least one driver signal for the exciter mechanism for effecting vibrations of the at least one measuring tube and generates, by means of the first primary signal, as well as with application of a damping, measured value, which represents an excitation power required for maintaining vibrations of the at least one measuring tube, and, respectively, a damping of vibrations of the at least one measuring tube as a result of inner friction in the medium flowing in the measuring transducer, a pressure difference, measured value, which represents a pressure difference occurring between two predetermined reference points in the flowing medium.
Abstract:
A measuring transducer comprises a measuring tube vibrating at least at times during operation, having a wall thickness (s) and at least one oscillation sensor, especially an electrodynamic oscillation sensor, for producing at least one primary signal of the measuring transducer representing vibrations of the measuring tube. In the measuring transducer at least one securement element, especially a metal securement element, fixedly encircling the measuring tube essentially along a circumferential line thereof and having a total width (B), for holding a component of the oscillation sensor, especially a magnet coil or a permanent magnet, on the measuring tube is provided. The securement element has an essentially rectangular outer perimeter with a projection protruding out therefrom by a height (h) and serving for holding the component of the oscillation sensor. The projection has a width (e), which is smaller than the total width (B) of the securement element.
Abstract:
The measuring system has a measuring transducer which produces primary signals transmitter electronics for activating the measuring transducer and for evaluating primary signals. The measuring transducer includes at least one measuring tube; at least one electro-mechanical, oscillation exciter, a first oscillation sensor. The transmitter electronics, in turn, delivers at least one driver signal for the oscillation exciter for effecting vibrations of the at least one measuring tube and generates, by means of the first primary signal and by means of the second primary signal, as well as with application of a Reynolds number, measured value representing a Reynolds number, Re, for medium flowing in the measuring transducer, a pressure difference, measured value, which represents a pressure difference occurring between two predetermined reference points in the flowing medium.
Abstract:
The measuring system comprises: A measuring transducer of vibration-type, through which medium flows during operation and which produces primary signals corresponding to parameters of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for activating the measuring transducer and for evaluating primary signals delivered by the measuring transducer. The measuring transducer includes: At least one measuring tube for conveying flowing medium; at least one electro-mechanical, oscillation exciter for exciting and/or maintaining vibrations of the at least one measuring tube; as well as at least a first oscillation sensor for registering vibrations at least of the at least one measuring tube and for producing a first primary signal of the measuring transducer representing vibrations at least of the at least one measuring tube. The transmitter electronics, in turn, delivers at least one driver signal for the exciter mechanism for effecting vibrations of the at least one measuring tube and generates, by means of the first primary signal, as well as with application of a damping, measured value, which represents an excitation power required for maintaining vibrations of the at least one measuring tube, and, respectively, a damping of vibrations of the at least one measuring tube as a result of inner friction in the medium flowing in the measuring transducer, a pressure difference, measured value, which represents a pressure difference occurring between two predetermined reference points in the flowing medium.
Abstract:
A measuring transducer comprises a measuring tube vibrating at least at times during operation, having a wall thickness (s) and at least one oscillation sensor, especially an electrodynamic oscillation sensor, for producing at least one primary signal of the measuring transducer representing vibrations of the measuring tube. In the measuring transducer at least one securement element, especially a metal securement element, fixedly encircling the measuring tube essentially along a circumferential line thereof and having a total width (B), for holding a component of the oscillation sensor, especially a magnet coil or a permanent magnet, on the measuring tube is provided. The securement element has an essentially rectangular outer perimeter with a projection protruding out therefrom by a height (h) and serving for holding the component of the oscillation sensor. The projection has a width (e), which is smaller than the total width (B) of the securement element.
Abstract:
The measuring system comprises: A measuring transducer of vibration-type, through which medium flows during operation and which produces primary signals corresponding to parameters of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for activating the measuring transducer and for evaluating primary signals delivered by the measuring transducer. The measuring transducer includes: At least one measuring tube for conveying flowing medium; at least one electro-mechanical, oscillation exciter for exciting and/or maintaining vibrations of the at least one measuring tube; and a first oscillation sensor for registering vibrations of the at least one measuring tube and for producing a first primary signal of the measuring transducer representing vibrations at least of the at least one measuring tube. The transmitter electronics, in turn, delivers at least one driver signal for the exciter mechanism for effecting vibrations of the at least one measuring tube and generates, by means of the first primary signal and/or by means of the driver signal, as well as with application of a pressure, measured value (Xp1), which represents a first pressure, pRef, reigning in the flowing medium, a pressure, measured value (Xp2), which, in turn, represents a static second pressure, pcrit, reigning in the flowing medium.
Abstract:
The measuring system comprises: A measuring transducer of vibration-type, through which medium flows during operation and which produces primary signals corresponding to parameters of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for activating the measuring transducer and for evaluating primary signals delivered by the measuring transducer. The measuring transducer includes: At least one measuring tube for conveying flowing medium; at least one electro-mechanical, oscillation exciter for exciting and/or maintaining vibrations of the at least one measuring tube; and a first oscillation sensor for registering vibrations of the at least one measuring tube and for producing a first primary signal of the measuring transducer representing vibrations at least of the at least one measuring tube. The transmitter electronics, in turn, delivers at least one driver signal for the exciter mechanism for effecting vibrations of the at least one measuring tube and generates, by means of the first primary signal and/or by means of the driver signal, as well as with application of a pressure, measured value (Xp1), which represents a first pressure, pRef, reigning in the flowing medium, a pressure, measured value (Xp2), which, in turn, represents a static second pressure, pcrit, reigning in the flowing medium.
Abstract:
The present disclosure generally relates to a system for crime risk forecasting using cyber security and deep learning comprises a data input unit for receiving a pre-stored crime event dataset and real time crime event data input along with geographical details of an area; a classification processing unit for categorizing pre-stored crime event dataset and real time crime event data input according to crime type; a graphical user interface for entering a target geographic area for forecasting upcoming crime risk; a central processing unit for generating a crime risk forecast based on the historical crime incident stored in the pre-stored crime event dataset using a deep leaning technique; and a control unit coupled to a display for displaying a crime risk ranking generated based on the crime risk forecast and one or more crime risk event for the target geographic area.
Abstract:
A method for testing a computer application includes identifying components of a version of the application, said components including one or more components that are one of new and modified, generating a keyword matrix of the identified application components. A search is performed in a test script repository with respect to components listed as at least one of the first and second dimensions of the matrix. The keyword matrix is populated with test case identification numbers in the search result. Based on the populated keyword matrix, one or more of (a) gaps in test case coverage for the version of the application, and (b) one or more test cases covering the version of the application are identified.