Abstract:
A process for making a graft copolymer of an olefin polymer material in at least two polymerization stages comprising: a) irradiating an olefin polymer material at a temperature of about 10° C. to about 85° C. with high energy ionizing radiation, thereby forming an irradiated olefin polymer material (A); b) treating the irradiated olefin polymer material (A) at a temperature from about 25° C. to about 90° C. with about 5 to about 120 pph of at least one grafting monomer which is polymerizable by free radicals, thereby forming a stage b) graft copolymer; c) treating the stage b) graft copolymer at a temperature from about 25° C. to about 90° C., which is the same as or different from the temperature used in stage b), with about 5 to about 120 pph of at least one grafting monomer which is different from the monomer used in stage b) and polymerizable by free radicals.
Abstract:
Filled olefin polymer concentrates having improved mechanical properties and scratch resistance comprising: A. about 1.0 to about 40.0 wt % of an oxidized olefin polymer material; B. about 0.5 to about 40.0 of a maleated polypropylene; and C. about 7.0 to about 80.0 wt % of a filler chosen from fiberglass, carbon fibers, graphite fibers, whiskers, metal fibers, aramides, talc, wollastonite, calcium carbonate, mica, glass microspheres, ceramic microspheres, glass wool, rock wool, stainless steel wool, steel wool, gypsum, alumina, alumina-silica, silica, and mixtures thereof; wherein the sum of components A+B+C is equal to 100 wt %.
Abstract:
A process for making a graft copolymer of an olefin polymer material in at least two polymerization stages comprising: a) treating a reactive, peroxide-containing olefin polymer material (A) at a temperature from about 80° C. to a temperature below the softening point of the polymer material with about 5 to about 120 parts per hundred parts of the polymer material (A) by weight (pph) of at least one grafting monomer which is polymerizable by free radicals; b) treating the stage a) graft copolymer at a temperature from about 80° C. to a temperature below the softening point of the stage a) graft copolymer, which is the same as or different from the temperature used in stage a), with about 5 to about 120 pph of at least one grafting monomer which is different from the monomer used in stage a) and polymerizable by free radicals.
Abstract:
A process for making a thermoplastic polyolefin elastomer comprising: a) preparing a polymer mixture comprising: (I) about 70 to about 95% by weight of a heterophasic polyolefin; (II) about 4.9 to about 27% by weight of a reactive, peroxide-containing olefin polymer; (III) about 0.1 to about 3.0% by weight of an organic peroxide; and (IV) optionally, about 1 to about 10% by weight of a co-agent having a molecular structure containing at least two aliphatic unsaturated carbon-carbon bonds; wherein (I)+(II)+(III)+(IV) equals 100%; b) extruding or compounding in molten state the polymer mixture, thereby producing a melt mixture; and optionally c) pelletizing the melt mixture.
Abstract:
A process for making a flame retardant olefin polymer material comprising: a) preparing a polymer mixture comprising: I. about 70.0 to about 98.0 wt % of a reactive, peroxide-containing olefin polymer material (A); II. about 1.5 to about 22.5 wt % of at least one non-polymerizable halogenated flame retardant containing at least one aliphatic, unsaturated carbon-carbon bond; and III. about 0.5 to about 7.5 wt % of at least one metal synergist; wherein the sum of components I+II+III is equal to 100 wt %; b) extruding or compounding in molten state the polymer mixture, thereby producing a melt mixture; and optionally c) pelletizing the melt mixture.
Abstract:
A process for making an improved soft olefin polymer material comprising: a) preparing a polymer mixture comprising: (I) about 70 to about 95% by weight of a heterophasic polyolefin; (II) about 5 to about 30% by weight of a reactive, peroxide-containing olefin polymer; and (III) optionally, about 1 to about 10% by weight of a co-agent having a molecular structure containing at least two aliphatic unsaturated carbon-carbon bonds; wherein (I)+(II)+(III) equals 100%; b) extruding or compounding in molten state the polymer mixture, thereby producing a melt mixture; and optionally c) pelletizing the melt mixture.