Abstract:
The invention provides chunk polycrystalline silicon having a concentration of carbon at the surface of 0.5-35 ppbw. A process for cleaning polycrystalline silicon chunks having carbon contaminations at the surface, includes a thermal treatment of the polycrystalline silicon chunks in a reactor at a temperature of 350 to 600° C., the polycrystalline silicon chunks being present in an inert gas atmosphere during the thermal treatment, and the polycrystalline silicon chunks after the thermal treatment having a concentration of carbon at the surface of 0.5-35 ppbw.
Abstract:
Metallurgical silicon containing impurities of carbon and/or carbon-containing compounds is classified and subsequently used selectively for chlorosilane production. The process comprises the steps of: a) determining the free carbon proportion which reacts with oxygen up to a temperature of 700° C., b) directing metallurgical silicon in which the free carbon proportion is ≤150 ppmw to a process for producing chlorosilanes and/or directing metallurgical silicon in which the free carbon proportion is >150 ppmw to a process for producing methylchlorosilanes. As a result of the process, metallurgical silicon having a total carbon content of up to 2500 ppmw can be used for producing chlorosilanes.
Abstract:
The invention provides chunk polycrystalline silicon having a concentration of carbon at the surface of 0.5-35 ppbw. A process for cleaning polycrystalline silicon chunks having carbon contaminations at the surface, includes a thermal treatment of the polycrystalline silicon chunks in a reactor at a temperature of 350 to 600° C., the polycrystalline silicon chunks being present in an inert gas atmosphere during the thermal treatment, and the polycrystalline silicon chunks after the thermal treatment having a concentration of carbon at the surface of 0.5-35 ppbw.