Abstract:
A business form product (10) broadly including a printable sheet (12), a magnetic sheet (14) aligned edge-to-edge with the printable sheet (12) to define a seam (16), and a heat-resistant tape (18) applied over the seam (16) to retain the sheets (12, 14) in the edge-to-edge relationship is disclosed. The inventive business form product (10, 106) is formed by joining multiple continuous webs (38, 58) edge-to-edge and marrying the webs (38, 58) with a continuous streamer of tape (86) in a press (36). A preferred embodiment of the inventive method of forming the continuous sheet (106) is disclosed wherein at least one rotatable mechanical web guide (72) is used to align the webs (38, 58) in the edge-to-edge relationship, thereby enabling precise alignment not available with existing optic-type web guides. A preferred embodiment of the printable business form product (10) is disclosed wherein heat-resistant tape (18) enables the business form product (10) to be printed in high-heat printing applications (e.g., printed in an offline laser printer) without fracturing the taped seam (16).
Abstract:
A die cut printed blank (10) providing a bisectional, continuous printed surface (24) defined by non-magnetic and magnetic sheets (12,14) joined with an adhesion seam (36) is disclosed. The blank (10) broadly includes a printable sheet (12), a magnetic sheet (14) coupled to the printable sheet (12), a coating carrier (16) applied to the magnetic sheet (14), and a plurality of die cuts (18) in the magnetic sheet (14). The coating carrier (16) is a thin solid liner having a relatively low coefficient of friction that is formed by applying a curable liquid to the rear face (34b) of the magnetic layer (34) and then UV curing the liquid to form the solid liner (16). The coating carrier (16) retains the magnetic sheet (14) together after the sheet (14) has been die cut and enables the sheet (14) to be easily and quickly removed from a stack of other similar magnetic sheets without inhibiting the desired magnetic properties of the finished printed blank (10).
Abstract:
A method and mounting assembly for mounting an electronic communication device having electronic circuitry to a surface is described, wherein the mounting assembly is associated with a back face of the electronic communication device. In a first preferred embodiment, the mounting assembly is a magnetic material associated with the back face of the electronic communication device. The magnetic material is magnetically influenced such that a magnetic field produced by the magnetic material emanates away from the back face of the electronic communication device. In an alternative first preferred embodiment, a synthetic resin laminate shield is intermediately placed between the back surface of the electronic communication device and the magnetic material for further insulating protection from the magnetic field of the magnetic material. In a second preferred embodiment, the back surface of the electronic communication device is provided with a repositionable adhesive. A silicone release layer is positioned on the repositionable adhesive for removal by the user and mounting of the electronic communication device on the surface.
Abstract:
A die cut printed blank (10) providing a bisectional, continuous printed surface (24) defined by non-magnetic and magnetic sheets (12,14) joined with an adhesion seam (36) is disclosed. The blank (10) broadly includes a printable sheet (12), a magnetic sheet (14) coupled to the printable sheet (12), a coating carrier (16) applied to the magnetic sheet (14), and a plurality of die cuts (18) in the magnetic sheet (14). The coating carrier (16) is a thin solid liner having a relatively low coefficient of friction that is formed by applying a curable liquid to the rear face (34b) of the magnetic layer (34) and then UV curing the liquid to form the solid liner (16). The coating carrier (16) retains the magnetic sheet (14) together after the sheet (14) has been die cut and enables the sheet (14) to be easily and quickly removed from a stack of other similar magnetic sheets without inhibiting the desired magnetic properties of the finished printed blank (10).