Abstract:
A method of making clear ice spheres includes a providing a mold apparatus having a first mold portion and a second mold portion having mold cavity segments which define one or more mold cavities when the mold apparatus is assembled in an ice forming position. The mold apparatus is then cooled using a cooling source in thermal communication with the first mold portion. Water is then injected into the mold cavities, such that a portion of the water injected into the mold cavities is solidified in a directional manner from the first mold portion to the second mold portion to create a clear ice structure. Water is continuously circulated within the mold cavities to ensure clear ice is formed by injecting and simultaneously ejecting water from the mold cavities during ice formation. The ice clear structures are then released from the mold apparatus by disassembling the mold apparatus.
Abstract:
A method of making an ice structure comprising the steps of: providing a mold with at least two mold portions where the at least two mold portions come together to form a cavity that defines a shape of an ice structure; placing the at least two mold portions in thermal communication with at least one cooling source; chilling the at least two mold portions using the at least one cooling source; orienting the at least two mold portions in spaced apart relation; delivering a flow of water such that the flow of water passes along the surface of the at least two mold portions with the mold segments such that water flows (by capillary/wicking action) over the mold segment and forms an ice structure segment; ceasing the flow of water when the ice structure segments are formed; and fusing the ice structure segments together to form the ice structure.
Abstract:
An icemaker is mounted remotely from a freezer compartment. The icemaker includes an ice mold. A thermoelectric device is provided and includes a warm side and an opposite cold side. A flow pathway is connected in communication between the cold side of the thermoelectric device and the icemaker. In one aspect, a fan is operatively positioned to move air from the fresh food compartment across the warm side of the thermoelectric device and a pump moves fluid from the cold side of the thermoelectric device to the icemaker. Cold air, such as from a refrigerator compartment, may be used to dissipate heat from the warm side of the thermoelectric device for providing cold fluid to and for cooling the ice mold of the icemaker.
Abstract:
A unitary clear ice sheet is formed from a plurality of individual clear ice sheets which are fused together to give the unitary ice sheet a predetermined thickness. The fused unitary ice sheet is a clear unitary ice sheet due to the formation of the plurality of individual clear ice sheets by running water over a cold plate apparatus or evaporator mechanism to form the ice sheets in a gradual layer-by-layer process. The fused unitary clear ice sheet is used to mold or shape clear ice structure therefrom, such as clear ice spheres in a mold apparatus.
Abstract:
An ice maker has an ice mold that includes a metallic piece and an insulated piece. A cooling source is thermally coupled to the metallic piece. A cavity is within the ice mold and has a first reservoir in the metallic piece and a second reservoir in the insulated piece. The first and second reservoirs align to substantially enclose the cavity. An intake aperture in the insulated piece extends to the cavity for receiving water. A drive body rotatably coupled to the ice mold that operates in an ice-making cycle, wherein the drive body repeatedly rotates the mold from an injection position to a tilted position. The cavity receives an incremental amount of water in the injection position and moves to the tilted position to freeze at least a portion of the incremental amount of water over a side surface of the cavity to make an ice piece.
Abstract:
An ice support and storage tray includes one or more cavities having upwardly facing spherical surface portions that support spherical pieces of ice. The tray is preferably made of a material having a low thermal conductivity to reduce melting of the spherical pieces of ice. The spherical support surfaces minimize melting points that could otherwise cause the spherical pieces of ice to melt and develop irregular surface shapes. The ice tray may be used in a freezer having an ice maker that transports spheres of ice to the ice support cavities. The ice storage tray may be configured to permit removal of spheres of ice without tipping the tray upside down and/or twisting/deforming the tray.
Abstract:
An ice maker has an ice mold that includes a metallic piece and an insulated piece. A cooling source is thermally coupled to the metallic piece. A cavity is within the ice mold and has a first reservoir in the metallic piece and a second reservoir in the insulated piece. The first and second reservoirs align to substantially enclose the cavity. An intake aperture in the insulated piece extends to the cavity for receiving water. A drive body rotatably coupled to the ice mold that operates in an ice-making cycle, wherein the drive body repeatedly rotates the mold from an injection position to a tilted position. The cavity receives an incremental amount of water in the injection position and moves to the tilted position to freeze at least a portion of the incremental amount of water over a side surface of the cavity to make an ice piece.
Abstract:
A clear ice maker assembly for an appliance includes an ice tray rotatably coupled with a housing and horizontally suspended within an interior volume of the housing. The ice tray includes a metallic ice forming plate with a bottom surface, a substantially planar top surface and an edge portion. A containment wall extends upward from the top surface along the edge portion. A grid having at least one dividing wall extends across the top surface between the containment walls. A fluid line extends into the housing and supplies water to the top surface of the ice tray to be retained by the containment wall and the grid. A cooling source is thermally coupled to the bottom surface of the ice forming plate. The containment wall and the grid have a material with a lower thermal conductivity than the ice forming plate.
Abstract:
An ice maker adapted to make clear ice spheres includes a mold apparatus having a first mold portion and a second mold portion. The first and second mold portions further include mold cavity segments which define mold cavities when the mold apparatus is assembled in an ice forming position. A cooling source is in thermal communication with the first mold portion of the mold apparatus, such that water injected into the mold cavities is solidified in a directional manner from the first mold portion to the second mold portion to create a clear ice structure. Water is circulated, typically continuously, within the mold cavities to ensure clear ice is formed by injecting and simultaneously ejecting water from the mold cavities during ice formation.
Abstract:
An icemaker is mounted remotely from a freezer compartment. The icemaker includes an ice mold. A thermoelectric device is provided and includes a warm side and an opposite cold side. A flow pathway is connected in communication between the cold side of the thermoelectric device and the icemaker. In one aspect, a fan is operatively positioned to move air from the fresh food compartment across the warm side of the thermoelectric device and a pump moves fluid from the cold side of the thermoelectric device to the icemaker. Cold air, such as from a refrigerator compartment, may be used to dissipate heat from the warm side of the thermoelectric device for providing cold fluid to and for cooling the ice mold of the icemaker.