Abstract:
A method of processing a signal in a hearing aid (50) comprising the steps of determining a gradient of a speech intelligibility measure using a closed form expression of the gradient and modifying the frequency dependent hearing aid gains in dependence on the calculated gradient. The invention also provides a hearing aid (50).
Abstract:
A wearable EEG monitor for continuously monitoring the EEG of a user through capacitive coupling to an ear canal of a user comprises an ear insert (1) for positioning within the human ear canal, comprising at least two capacitive electrodes (16) for recording a signal. The electrodes are coated with a dielectricum for electrical insulation. The electrodes are connected to an amplifier (17). The amplifier has an input impedance matched to the impedance of the electrodes. The invention further provides a method of monitoring brain waves.
Abstract:
A personal wearable EEG monitor comprising an implantable electrode part with at least two electrodes (2,3) for measuring an EEG signal of a person. The electrode part comprises an electronic circuit arranged in a housing (1) with each electrode arranged external to the housing. The electrode part comprises a testing circuit for testing functionality of the electrode part. The testing circuit comprises a capacitor (9) coupled in serial connection to at least one of the electrodes, and a test signal generator for providing a test signal. The EEG monitor is adapted for analyzing the signal resulting from the signal generator for identification of faults in the electrode part. The invention further provides a method for detecting a leak current in an implanted EEG monitor part.
Abstract:
A wearable EEG monitor for continuously monitoring the EEG of a user through capacitive coupling to an ear canal of a user includes an ear insert (1) for positioning within the human ear canal, having at least two capacitive electrodes (16) for recording a signal. The electrodes are coated with a dielectricum for electrical insulation. The electrodes are connected to an amplifier (17). The amplifier has an input impedance matched to the impedance of the electrodes. The invention further provides a method of monitoring brain waves.