Abstract:
A movable partition system includes a movable partition including coupled panels and a lead post engaged with and movable along a track. A motor control system includes a motor coupled to the movable partition and a switching circuit coupled to the motor and for selectively coupling the motor to a positive power source and a negative power source responsive to one or more PWM signals. An encoder is configured for generating one or more rotation signals indicative of operational direction and operational speed of the motor. A motor controller is coupled to the switching circuit and is configured for improving airflow around the panels of the movable partition when the lead post of the movable partition is between a predefined position and a fully retracted position indicative of a billowing effect for the panels by adjusting pulse widths of the PWM signals to control rotational speed of the motor.
Abstract:
Closure assemblies for movable partitions may include a leading end assembly having a first side and a second side and a latching assembly coupled thereto. The latching assembly may include a first latching member having a portion thereof positioned proximate to the first side and a second latching member having a portion thereof positioned proximate to the second side. Movable partition systems may include a plurality of hingedly coupled panels movably coupled to a track, and a leading end assembly coupled to at least one panel of the plurality of hingedly coupled panels. The leading end assembly may include at least two latching features positioned on the leading end assembly. Methods of securing a movable partition may include retaining a first latching member and a second latching member in a retracted position and extending the first latching member and the second latching member to an extended position.
Abstract:
Automatic drive systems for movable partitions may comprise a floating jamb configured to attach to panels of a movable partition and glide within a pocket. A motor may be configured to extend the movable partition. The motor may be configured for mounting in the pocket on a back side of the floating jamb opposing a front side of the floating jamb to which the panels of the movable partition are configured to attach. An electronics enclosure may be sized and configured to contain electronics to connect to the motor. The electronics enclosure may be configured for positioning in the pocket on the backside in a location offset from a location where the motor is configured to be positioned. A depth of the electronics enclosure, as measured in a direction in which the floating jamb is mounted to glide, may be less than or equal to a depth of the motor.
Abstract:
A movable partition system includes a movable partition including coupled panels and a lead post engaged with and movable along a track. A motor control system includes a motor coupled to the movable partition and a switching circuit coupled to the motor and for selectively coupling the motor to a positive power source and a negative power source responsive to one or more PWM signals. An encoder is configured for generating one or more rotation signals indicative of operational direction and operational speed of the motor. A motor controller is coupled to the switching circuit and is configured for improving airflow around the panels of the movable partition when the lead post of the movable partition is between a predefined position and a fully retracted position indicative of a billowing effect for the panels by adjusting pulse widths of the PWM signals to control rotational speed of the motor.
Abstract:
Movable partition systems include a drive mechanism including a motor positioned at least partially on a side of a track opposite a movable partition. Automatically movable partition systems include a movable partition movable along a track and a motor configured to move the movable partition, the motor positioned on a side of the track opposite the movable partition. Methods of installing a movable partition system include coupling a movable partition to a track, positioning a drive mechanism at least partially on a side of the track opposite the movable partition, and coupling an elongated drive member to the movable partition. Methods of moving a movable partition along a track include actuating a drive mechanism positioned at least substantially in a header recess. Drive modules for a movable partition system and other methods of installing a movable partition system including attaching a motor to a section of track are also disclosed.
Abstract:
A movable partition system includes a movable partition including coupled panels and a lead post engaged with and movable along a track. A motor control system includes a motor coupled to the movable partition and a switching circuit coupled to the motor and for selectively coupling the motor to a positive power source and a negative power source responsive to one or more PWM signals. An encoder is configured for generating one or more rotation signals indicative of operational direction and operational speed of the motor. A motor controller is coupled to the switching circuit and is configured for improving airflow around the panels of the movable partition when the lead post of the movable partition is between a predefined position and a fully retracted position indicative of a billowing effect for the panels by adjusting pulse widths of the PWM signals to control rotational speed of the motor.
Abstract:
Closure assemblies for movable partitions may include a leading end assembly having a first side and a second side and a latching assembly coupled thereto. The latching assembly may include a first latching member having a portion thereof positioned proximate to the first side and a second latching member having a portion thereof positioned proximate to the second side. Movable partition systems may include a plurality of hingedly coupled panels movably coupled to a track, and a leading end assembly coupled to at least one panel of the plurality of hingedly coupled panels. The leading end assembly may include at least two latching features positioned on the leading end assembly. Methods of securing a movable partition may include retaining a first latching member and a second latching member in a retracted position and extending the first latching member and the second latching member to an extended position.
Abstract:
A movable partition system includes a movable partition including coupled panels and a lead post engaged with and movable along a track. A motor control system includes a motor coupled to the movable partition and a switching circuit coupled to the motor and for selectively coupling the motor to a positive power source and a negative power source responsive to one or more PWM signals. An encoder is configured for generating one or more rotation signals indicative of operational direction and operational speed of the motor. A motor controller is coupled to the switching circuit and is configured for improving airflow around the panels of the movable partition when the lead post of the movable partition is between a predefined position and a fully retracted position indicative of a billowing effect for the panels by adjusting pulse widths of the PWM signals to control rotational speed of the motor.
Abstract:
Automatic drive systems for movable partitions may comprise a floating jamb configured to attach to panels of a movable partition and glide within a pocket. A motor may be configured to extend the movable partition. The motor may be configured for mounting in the pocket on a back side of the floating jamb opposing a front side of the floating jamb to which the panels of the movable partition are configured to attach. An electronics enclosure may be sized and configured to contain electronics to connect to the motor. The electronics enclosure may be configured for positioning in the pocket on the backside in a location offset from a location where the motor is configured to be positioned. A depth of the electronics enclosure, as measured in a direction in which the floating jamb is mounted to glide, may be less than or equal to a depth of the motor.
Abstract:
Movable partition systems include a drive mechanism including a motor positioned at least partially on a side of a track opposite a movable partition. Automatically movable partition systems include a movable partition movable along a track and a motor configured to move the movable partition, the motor positioned on a side of the track opposite the movable partition. Methods of installing a movable partition system include coupling a movable partition to a track, positioning a drive mechanism at least partially on a side of the track opposite the movable partition, and coupling an elongated drive member to the movable partition. Methods of moving a movable partition along a track include actuating a drive mechanism positioned at least substantially in a header recess. Drive modules for a movable partition system and other methods of installing a movable partition system including attaching a motor to a section of track are also disclosed.