摘要:
A process for fluorination of borohydride salts including providing a reaction medium comprising HF and a superacid. A borohydride salt compound is added to the reaction medium. The borohydride salt is reacted with the with the reaction medium under conditions to form a fluorinated borohydride salt. In addition, reactor vessels may be provided for reacting the HF, superacid additive and borohydride that are fabricated from materials resistant to superacid compositions.
摘要:
A process for fluorination of borohydride salts including providing a reaction medium comprising HF and a superacid. A borohydride salt compound is added to the reaction medium. The borohydride salt is reacted with the reaction medium under conditions to form a fluorinated borohydride salt. In addition, reactor vessels may be provided for reacting the HF, superacid additive and borohydride that are fabricated from materials resistant to superacid compositions.
摘要:
The present invention relates to lithium secondary batteries comprising a negative electrode, a positive electrode, a separator and a lithium-based electrolyte carried in an aprotic solvent, and to the electrolyte compositions, and to methods for purifying battery active materials. The electrolyte comprises at least one solvent and a lithium salt of the formula: Li2B12FxH12-x-yZy where x+y is from 3 to 12, and x and y are independently from 0 to 12, and Z comprises at least one of Cl and Br.
摘要:
A process for producing BrSF5 includes providing a first reactant including a metal fluoride of fluorine and a metal M selected from the group consisting of alkali metals, alkaline earth metals, and Ag, providing a second reactant including BrF3, combining the first reactant and the second reactant to form a mixture, wherein the first reactant and the second reactant are allowed to contact for a period of time sufficient to produce MBrF4 in an amount stoichiometrically equivalent to a quantity of BrF3, and providing a third reactant including SF4, wherein the third reactant reacts with MBrF4. The process for producing BrSF5 can further include providing a fourth reactant including Br2, wherein the fourth reactant is provided before, during and/or after providing the first reactant, the second reactant and/or the third reactant. BrSF5 is produced in a yield of from about 50% to about 99.99% based on the amount of SF4.
摘要:
A process for fluorinating &bgr;-dicarbonyls to form the corresponding &agr;-fluorinated-&bgr;-dicarbonyl compounds is provided. The process is represented by the following reaction scheme: where R1 is H, alkyl or alkoxy, R2 is H, alkyl or perfluoroalkyl, and R3 is H, Cl, Br, I or alkyl. Use of oxygen in the fluorine stream yields a product which is 90-96% pure and contains radical fluorination impurity levels which are 10-20% lower than when oxygen is not used.
摘要:
Novel compositions containing SF4—O—CF3 bonded to an organic group are disclosed. Aryl trifluoromethoxytetrafluorosulfuranes (or Ar—SF4—O—CF3), have been synthesized via the reaction of an aryl disulfide or thiol with fluoroxytrifluoromethane (F3COF). The compositions are useful synthons, which may be derivatized to yield highly electrically polar molecules, particularly novel liquid crystal compositions having high dielectric anisotropies. Cycloalkyl trifluoromethoxytetrafluorosulfuranes have similar utility.
摘要:
The present invention relates to lithium secondary batteries comprising a negative electrode, a positive electrode, a separator and a lithium-based electrolyte carried in an aprotic solvent, and to the electrolyte compositions. The electrolyte comprises a lithium salt of the formula: Li2B12FxH12-x-yZy where x+y is from 3 to 12, and x and y are independently from 0 to 12, and Z comprises at least one of Cl and Br.
摘要:
A process is described for the synthesis of an aryl sulfur pentafluoride compound. In one embodiment of the present invention, there is provided a process for preparing an aryl sulfurpentafluoride compound comprising: combining an at least one aryl sulfur compound with a fluorinating agent to at least partially react and form an intermediate aryl sulfurtrifluoride product; and exposing the intermediate aryl sulfurtrifluoride product to the fluorinating agent and optionally a fluoride source to at least partially react and form the aryl sulfurpentafluoride compound.