摘要:
A vehicle communication network (200) includes a plurality of network elements (208-212) and a plurality of communication links (214-230) communicatively coupling the network elements in a point-to-point configuration. At least a portion of the plurality of communication links may be specified in accordance with a shared-access bus protocol. The plurality of communication links are arranged to communicate data packets between the network elements.
摘要:
A vehicle communication network (200) includes a plurality of network elements (202–212) and a plurality of communication links (214–230) communicatively coupling the network elements in a point-to-point configuration. At least a portion of the plurality of communication links are specified in accordance with a shared-access bus protocol. The plurality of communication links are arranged to communicate data packets between the network elements, and data packets are modified for transport via the plurality of communication links.
摘要:
A vehicle communication network (200) includes a plurality of network elements (208-212) and a plurality of communication links (214-230) communicatively coupling the network elements in a point-to-point configuration. At least a portion of the plurality of communication links may be specified in accordance with a shared-access bus protocol. The plurality of communication links are arranged to communicate data packets between the network elements.
摘要:
Nodes which include additional sensing and communication capability as compared to prior nodes. The sensing capability allows determination of actual current flows through the particular nodes, including each port of the node, to allow a determination of power flow to better control operations. Because of this understanding of power flow, smaller modules or nodes can be utilized if desired. For protection of a lower power node, an upstream node can open the link to the node should it go overcurrent or otherwise fault. Further, with the additional sensing capability, actual load balancing and multiple controllable flows, such as for standby, can be developed. The additional communication in combination with the sensing also allows better fault isolation. By being able to determine the actual location of the fault, other operations in the vehicle can continue with just the faulty area being disconnected.
摘要:
A vehicle network architecture includes an interrupted shared-access bus and a switch fabric incorporated therein at the point of interruption. The switch fabric permits incorporation of a feature or device into the shared access bus architecture without modification or revisions of the shared access bus protocol or legacy devices.
摘要:
A vehicle communication network (200) includes a plurality of network elements (202-212) and a plurality of communication links (214-230) communicatively coupling the network elements in a point-to-point configuration. At least a portion of the plurality of communication links are specified in accordance with a shared-access bus protocol. The plurality of communication links are arranged to communicate data packets between the network elements, and data packets are modified for transport via the plurality of communication links.
摘要:
A method of configuring a network within a vehicle, wherein the network includes a plurality of network elements and a plurality of communication links communicatively coupling the plurality of network elements for point-to-point communication, includes storing a last known configuration state of the network. Then, the network is monitored to determine a change in the configuration state of the network to establish a current configuration state. The current configuration state is then point-to-point propagated through the network via the communication links, and is stored at each of the plurality of network elements.
摘要:
A system and method for tunneling standard bus protocol messages through an automotive switch fabric network. When a bus protocol message arrives on a connecting node in the network, a bus driver in the node will capture the message and store it into a message buffer where the message can be further processed by a tunneling application. Each received bus protocol message will be broken, or combined, to suit the available packet size of the underlying transmit layer of the switch fabric network. Data portions such as message identification, sequence number, port number, bus data type, and data length are reserved in each data packet. If the message is being broken down, the sequence number is used to differentiate the broken segments of the bus protocol message. The bus data type is used to indicate the type of protocol data being transmitted over the switch fabric. The same tunneling application may be used to reassemble the bus protocol message at a receiving node.
摘要:
A system and method for time synchronizing nodes in a switch fabric network of a vehicle. The network has a plurality of nodes that are joined by communication links for the transmission of data there between. Each node of the switch fabric may include a processor, a memory, a clock, a transceiver, and an input capture. The memory is adapted to store and retain timer offsets associated with communication links with neighboring nodes. The transceiver is adapted to transmit and receive synchronization messages between the node and neighboring nodes. The input capture is adapted to capture a timestamp associated with the transmission of synchronization messages. The processor is configured to compute the timer offsets associated with the communication links with neighboring nodes based on the captured timestamps by the input capture function. The computed offsets may then be broadcast and stored by the nodes for subsequent use in time synchronizing data packets through the switch fabric network.
摘要:
A system and method for evaluating the performance of an automotive switch fabric network using a diagnostic interface. A diagnostic device and interface is connected to an automotive switch fabric network, comprising of a plurality of communication nodes, through one of the nodes in the switch fabric network. The diagnostic device and interface configures the switch fabric network to operate in a test mode. The diagnostic device and interface will issue a first command to one node to start traffic across a test node at a predetermined traffic rate and a second command to another node to generate a test message that passes through the test node. The test node contains message processing logic that will process the messages as they pass through the test node. A plurality of timestamps is generated in the message processing logic of the test node to monitor the progression of the messages through the processing logic. The test node includes a diagnostic interface agent that collects the timestamp data and reports the data back to the diagnostic interface and device.