摘要:
A novel process for the recovery of alumina and potassium sulfate from alunite is provided comprising leaching the alunite with potassium hydroxide to which no sodium materials have been added, said leach solution being saturated with potassium sulfate. Aluminum values are solubilized into the leachate, and potassium and sulfur values are rendered soluble, but remain in the residue. The leachate is desilicated if necessary, preferably with lime, and aluminum trihydroxide is precipitated therefrom, followed by calcining to alumina product. The residue is leached to solubilize potassium sulfate in a secondary leach and the potassium sulfate product crystallized therefrom. Potassium hydroxide is regenerated from a portion of the potassium sulfate secondary leachate by several methods.Novel procedures for regenerating alkali metal hydroxides from the corresponding sulfates are also provided including routes involving formates and carbonates as intermediates and pyrohydrolysis.
摘要:
This invention concerns a process for recovering metal values from jarosite-containing materials by leaching with a calcium chloride solution at a temperature above about the atmospheric boiling point of the solution and under at least the autogenous pressure.
摘要:
Improvement in electrowinning manganese dioxide, or zinc in which the relative concentration of manganese or zinc ions to impurities is enhanced by selectively extracting manganese or zinc ions from a bleed taken from the electrowinning feed stream with an organic extractant, while rejecting impurities, stripping the loaded organics with spent electrolyte, and recycling loaded strip to the electrowinning feed. Stripped organic may be regenerated with an alkaline agent such as calcium oxide or magnesium oxide prior to recycle, and pH may be controlled during extraction by the same means.
摘要:
The processes of the present invention include mineral acid leaching of a metal containing material, such as an ore residue, containing fluoridated metal values in the presence of a complexing agent which will complex fluoride ions. The processes of the present invention provide for the separation of valuable metal, fluoride and radionuclide values from a feed material of high mineral content wherein the metals and radionuclides are present as substantially water insoluble fluorides or are trapped within a metal fluorine matrix which is substantially insoluble in typical chemical reactant systems.
摘要:
This invention discloses processes for the treatment of coal and coal derivatives in order to remove contaminates to produce a high purity coal product. The processes generally comprise a sequential acid leaching in which a hydrofluoric acid leach is followed by a hydrochloric acid leach. The pyrite and other heavy metals from the coal are removed by physical separation, either gravity or magnetic separation. The leached coal is then treated either by a washing and drying step or by a heat treatment to remove volatile halides. The HF acid and the HCl acid leachates are recovered for regeneration of the respective leachates and are recycled for use in the leaching steps. In additional processing, the coal may be pre-treated by a mild HCl acid leach and by pre-drying or physical beneficiation of the coal feedstock.
摘要:
A process for selectively leaching lead and silver chlorides from a sulfide ore residue in a rapid time which comprises brine leaching the residue under pressure at a temperature above the normal boiling point of the solution, preferably above 100.degree. C.Modifications are leaching at the agglomeration temperature of sulfur when present in the residue to agglomerate the sulfur for ease of recovery, and flashing from leach temperature to ambient as a lead chloride crystallization recovery step to produce a large crop of lead chloride crystals per pass.
摘要:
A process for separating precious metals from an MnO.sub.2, sulfidic or carbonaceous refractory ore or refractory feed such as tailings is provided. The process includes the step of leaching a feed with a leach liquor that includes an acid selected from the group of HCl and H.sub.2 SO.sub.4 in the presence of MnO.sub.2 and a reductant. A source of chloride ion is added to the leach sufficient to dissolve at least about 50% of the precious metals present in the ore. A portion of the leach is removed and precious metals are recovered from the removed portion. A portion of the chloride carrier is recycled to the leach to carry chloride values to the leach. In one embodiment, HCl is regenerated by pyrohydrolysis, which minimizes harmful waste products. The present process can advantageously avoid the use of noxious reagents.
摘要:
The present invention provides processes for the continuous removal of contaminants from coal to produce a clean purified fuel. The processes generally comprise producing a clean coal product having a mineral matter content of less than about 5 percent by weight from coal and coal derivatives by leaching feed coal crushed or sized to less than about 1 inch with a mixture of hydrochloric and hydrofluoric acids comprising less than about 70 weight percent HF and less than about 38 weight percent HCl at atmospheric pressure and at a temperature below the boiling point of the acid mixture. One embodiment of the present invention provides a process for producing a coal product with 5 percent ash content or less comprising comminuting raw coal or other coal-derived feed material to a size less than about 10 mm; leaching the comminuted coal with a mixture of HF and HCl comprising less than about 70 percent by weight HF and less than 38 percent by weight HCl at atmospheric pressure and a temperature below boiling, preferably ambient; separating the leached residue from the spent acid; washing the leached residue substantially free of spent acids and dissolved solids; separating pyrite from the coal by physical means; reducing halogens on the coal to an acceptable level by thermal treatment; and regenerating the mixture of HF and HCl by dual pyrohydrolysis and sulfation of the spent acids to recover substantially all of the fluorine value except for that reporting to waste as MgF.sub.2, either as HF or as volatile fluorides which are recycled. Another embodiment of the invention provides processes for producing HF, HCl, and mixtures thereof from complex aqueous streams containing at least two metal halide salts one of which will pyrohydrolyze in the presence of water vapor to form hydrogen halide and the metal oxide and one of which will not, but will in the presence of water vapor, SO.sub.2 and oxygen form hydrogen halide and metal sulfate.
摘要:
An improvement in hydrometallurgical recovery of metals, i.e. copper, zinc, cadmium, germanium, indium, lead, silver, gold, antimony and bismuth from materials such as flue dust containing arsenic in which the metals are selectively separated in successive process steps for final recovery, the improvement comprising precipitating arsenic as an insoluble ferric-arsenic compound in the first processing step, carrying the insoluble arsenic compound through subsequent processing steps in which it is insoluble until the other metals have been recovered leaving the ferric-arsenic compound as the final residue which can be disposed of without violating pollution requirements or converted to soluble sodium arsenate and recovered from solution by crystallization.
摘要:
Alkali and alkaline earth metal chlorides contained in a residue of a chlorination process of a feed material of bauxite or clay associated with coal are removed by the addition of sulfuric acid which causes their conversion to their sulfate form, and the simultaneous production of hydrochloric acid. The residue, which has been rendered environmentally acceptable, can be disposed of readily, for example, to an ash pond or disposal area for flue gas desulfurization sludges. The hydrochloric acid is then recycled to the chlorination process. The hydrochloric acid may be utilized, for example, as a binder of the feed material, to prechloridize the feed material or as a portion of the leach solution when the chlorination process is a hydrochloric acid leach.