摘要:
A system and method for SSS detection under carrier frequency offset in an orthogonal frequency-division multiple access (OFDMA) downlink channel. A processor receives a signal sample that includes a transmission on a primary synchronization signal (PSS) and a transmission on a one secondary synchronization signal (SSS). The processor determines a correlation “P” of a first symbol transmitted in the PSS of the signal sample to a first known symbol at each time “t” of time increments k of the signal sample and a correlation “S” of a second symbol transmitted in the a SSS to a second known symbol at each time t-.5/7 msecs. The processor receives a candidate phase rotation of θi from a set of “i” candidates and determines a correlation “Cmax” over the time increments k representing a maximum amplitude of a combined correlation of S and P, with P rotated by θi. The processor determines the cell identifier from the first and second known symbols that produced S and P of C max and an estimation of the frequency offset between a transmitter of the signal sample and a receiver of the signal sample.
摘要:
A system and method for SSS detection under carrier frequency offset in an orthogonal frequency-division multiple access (OFDMA) downlink channel. A processor receives a signal sample that includes a transmission on a primary synchronization signal (PSS) and a transmission on a one secondary synchronization signal (SSS). The processor determines a correlation “P” of a first symbol transmitted in the PSS of the signal sample to a first known symbol at each time “t” of time increments k of the signal sample and a correlation “S” of a second symbol transmitted in the a SSS to a second known symbol at each time t-.5/7 msecs. The processor receives a candidate phase rotation of θi from a set of “i” candidates and determines a correlation “Cmax” over the time increments k representing a maximum amplitude of a combined correlation of S and P, with P rotated by θi. The processor determines the cell identifier from the first and second known symbols that produced S and P of C max and an estimation of the frequency offset between a transmitter of the signal sample and a receiver of the signal sample.
摘要:
A system and method for SSS detection under carrier frequency offset in an orthogonal frequency-division multiple access (OFDMA) downlink channel. A processor receives a signal sample that includes a transmission on a primary synchronization signal (PSS) and a transmission on a one secondary synchronization signal (SSS). The processor determines a correlation “P” of a first symbol transmitted in the PSS of the signal sample to a first known symbol at each time “t” of time increments k of the signal sample and a correlation “S” of a second symbol transmitted in the a SSS to a second known symbol at each time t-.5/7msecs. The processor receives a candidate phase rotation of θi from a set of “i” candidates and determines a correlation “Cmax” over the time increments k representing a maximum amplitude of a combined correlation of S and P, with P rotated by θi. The processor determines the cell identifier from the first and second known symbols that produced S and P of C max and an estimation of the frequency offset between a transmitter of the signal sample and a receiver of the signal sample.
摘要:
Systems and methods for acquiring wireless network performance data comprising a user equipment accessible via a wireless network, the user equipment comprising; a receiver, a transmitter, a first processor configured with software executable instructions to cause the user equipment to perform operations comprising; receiving a data acquisition signal via the receiver, sampling a wireless network signal received at the user equipment in response to receiving the data acquisition signal, generating acquired network data, and transmitting the acquired network data via the transmitter, a server accessible via the wireless network, the server comprising, a second processor configured with software executable instructions to cause the server to perform operations comprising; transmitting the data acquisition signal, receiving the acquired network data; and generating network performance data using the acquired network data.
摘要:
Systems and methods for acquiring wireless network performance data comprising a user equipment accessible via a wireless network, the user equipment comprising; a receiver, a transmitter, a first processor configured with software executable instructions to cause the user equipment to perform operations comprising; receiving a data acquisition signal via the receiver, sampling a wireless network signal received at the user equipment in response to receiving the data acquisition signal, generating acquired network data, and transmitting the acquired network data via the transmitter, a server accessible via the wireless network, the server comprising, a second processor configured with software executable instructions to cause the server to perform operations comprising; transmitting the data acquisition signal, receiving the acquired network data; and generating network performance data using the acquired network data.
摘要:
Auditory processing is used in conjunction with cognitive mapping to produce an objective measurement of speech quality that approximates a subjective measurement such as MOS. In order to generate a data model for measuring speech quality from a clean speech signal and a degraded speech signal, the clean speech signal is subjected to auditory processing to produce a subband decomposition of the clean speech signal; the degraded speech signal is subjected to auditory processing to produce a subband decomposition of the degraded speech signal; and cognitive mapping is performed based on the clean speech signal, the subband decomposition of the clean speech signal, and the subband decomposition of the degraded speech signal. Various statistical analysis techniques, such as MARS and CART, may be employed, either alone or in combination, to perform data mining for cognitive mapping. From the large number of features extracted from the distortion surface, MARS is employed to find a smaller subset of features to form the speech quality estimator. The subset of feature variables, together with the particular manner of combining them, are jointly optimized to produce a statistically consistent estimate (data model) of subjective opinion scores such as MOS.