摘要:
A method and system for tracking a guidewire in a fluoroscopic image sequence is disclosed. In order to track a guidewire in a fluoroscopic image sequence, guidewire segments are detected in each frame of the fluoroscopic image sequence. The guidewire in each frame of the fluoroscopic image sequence is then detected by rigidly tracking the guidewire from a previous frame of the fluoroscopic image sequence based on the detected guidewire segments in the current frame. The guidewire is then non-rigidly deformed in each frame based on the guidewire position in the previous frame.
摘要:
A method and system for tracking a guidewire in a fluoroscopic image sequence is disclosed. In order to track a guidewire in a fluoroscopic image sequence, guidewire segments are detected in each frame of the fluoroscopic image sequence. The guidewire in each frame of the fluoroscopic image sequence is then detected by rigidly tracking the guidewire from a previous frame of the fluoroscopic image sequence based on the detected guidewire segments in the current frame. The guidewire is then non-rigidly deformed in each frame based on the guidewire position in the previous frame.
摘要:
A virtual map of vessels of interest in medical procedures, such as coronary angioplasty is created so that doses of contrasting agent given to a patient may be reduced. A position of a coronary guidewire is determined and locations of vessel boundaries are found. When the contrast agent has dissipated, virtual maps of the vessels are created as new images. The locations of the determined vessel boundaries are imported to a mapping system and an image obtained without using a contrast agent is modified based on the imported locations of vessel boundaries. This creates a virtual map of the vessels.
摘要:
A virtual map of vessels of interest in medical procedures, such as coronary angioplasty is created so that doses of contrasting agent given to a patient may be reduced. A position of a coronary guidewire is determined and locations of vessel boundaries are found. When the contrast agent has dissipated, virtual maps of the vessels are created as new images. The locations of the determined vessel boundaries are imported to a mapping system and an image obtained without using a contrast agent is modified based on the imported locations of vessel boundaries. This creates a virtual map of the vessels.
摘要:
A method and system for extracting coronary vessels fluoroscopic image sequences using coronary digital subtraction angiography (DSA) are disclosed. A set of mask images of a coronary region is received, and a sequence of contrast images for the coronary region is received. For each contrast image, a motion estimate is calculated between each of the mask images and a background region of the contrast image and a covariance is calculated for each motion estimate. Multiple background layer predictions are generated by generating a background layer prediction for each mask image based on the calculated motion estimate and covariance. The multiple background layer estimates are combined using statistical fusion to generate a final estimated background layer. The final estimated background layer is subtracted from the contrast image to extract a coronary vessel layer for the contrast image.
摘要:
A method and system for extracting coronary vessels fluoroscopic image sequences using coronary digital subtraction angiography (DSA) are disclosed. A set of mask images of a coronary region is received, and a sequence of contrast images for the coronary region is received. For each contrast image, a motion estimate is calculated between each of the mask images and a background region of the contrast image and a covariance is calculated for each motion estimate. Multiple background layer predictions are generated by generating a background layer prediction for each mask image based on the calculated motion estimate and covariance. The multiple background layer estimates are combined using statistical fusion to generate a final estimated background layer. The final estimated background layer is subtracted from the contrast image to extract a coronary vessel layer for the contrast image.
摘要:
Stent viewing is provided in medical imaging. Stent images are provided with minimal or no user input of spatial locations. Images showing contrast agent are distinguished from other images in a sequence. After aligning non-contrast images, the images are compounded to enhance the stent. The contrast agent images are used to identify the vessel. A contrast agent image is aligned with the enhanced stent or other image to determine the relative vessel location. An indication of the vessel wall may be displayed in an image also showing the stent. A preview images may be output. A guide wire may be used to detect the center line for vessel identification. Various detections are performed using a machine-trained classifier or classifiers.
摘要:
A method and system for real time stent enhancement on a live 2D fluoroscopic scene is disclosed. A motion compensated stent enhancement image is generated from a first set of frames in a fluoroscopic image sequence. A weighting field is generated based on the motion compensated stent enhancement image. For each new frame in the fluoroscopic image sequence that is received, the stent is enhanced in the new frame by compounding the new frame with the motion compensated stent enhancement image using the weighting field.
摘要:
Stent marker detection is automatically performed. Stent markers in fluoroscopic images or other markers in other types of imaging are detected using a machine-learnt classifier. Hierarchal classification may be used, such as detecting individual markers with one classifier and then detecting groups of markers (e.g., a pair) with a joint classifier. The detection may be performed in a single image and without user indication of a location.
摘要:
A method and system for real time stent enhancement on a live 2D fluoroscopic scene is disclosed. A motion compensated stent enhancement image is generated from a first set of frames in a fluoroscopic image sequence. A weighting field is generated based on the motion compensated stent enhancement image. For each new frame in the fluoroscopic image sequence that is received, the stent is enhanced in the new frame by compounding the new frame with the motion compensated stent enhancement image using the weighting field.