摘要:
A data encoding system includes an interleaving module, a generating module, and an insertion module. The interleaving module is configured to receive a data stream. The data stream includes a plurality of data blocks. The interleaving module is configured to, for each data block of a selected subset of the plurality of data blocks, swap positions of a pair of adjacent bits of the data block. The generating module is configured to (i) receive the data stream and (ii) for each of the plurality of data blocks, generate at least one corresponding error checking bit. The insertion module is configured to (i) receive the plurality of data blocks as modified by the interleaving module and (ii) generate an output data stream by inserting the at least one corresponding error checking bit into each one of the plurality of data blocks received from the interleaving module.
摘要:
A data encoding system for a data stream comprises an interleaving module that receives the data stream as N bit data blocks and that reverses positions of at least two of the N bits of selected ones of the data blocks. A generating module generates P error checking bits for each of the N bit data blocks. An insertion module receives the P error checking bits from the generating module and inserts the P error checking bits into the corresponding data block received from the interleaving module.
摘要:
A communications channel comprises a seed selector that selectively removes X M-bit symbols of user data from a seed set comprising Y M-bit symbols and that selects a scrambling seed from Y-X symbols remaining in the seed set, where X, Y and M are integers greater than one. A Hamming weight coding device that determines a Hamming weight of symbols of scrambled user data that are generated based on the user data and the selected scrambling seed and that selectively codes the symbols depending upon the determined Hamming weight.
摘要:
A system for detecting errors in received input data includes a first error detection circuit. The first error detection circuit is configured to receive the input data. The input data includes at least one of data and data with errors. The first error detection circuit is configured to generate a first error detection sequence in a first order. The system includes a second error detection circuit. The second error detection circuit is configured to receive the first error detection sequence and an error sequence. The error sequence is received in a second order that is different from the first order when there is data with errors. The second error detection circuit is configured to generate a second error detection sequence that indicates whether the error sequence is generated correctly.
摘要:
A communications channel that receives a user data sequence including N symbols and that supports host CRC includes a host bus interface (HBI) that generates cyclic redundancy check (CRCU) bits based on the user data sequence. A data dependent scrambler (DDS) receives the user data sequence and the CRCU bits and generates a scrambling seed. The DDS generates a scrambled user data sequence that is based on the user data sequence and the scrambling seed and generates a difference sequence.
摘要:
An error correcting Reed-Solomon decoder includes a syndrome calculator that calculates syndrome values. An error locator polynomial generator communicates with the syndrome calculator and generates an error locator polynomial. An error location finder communicates with at least one of the syndrome calculator and the error locator polynomial generator and generates error locations. An error values finder communicates with at least one of the syndrome calculator, the error location finder and the error locator polynomial generator and generates error values using an error value relationship that is not based on the traditional error evaluator polynomial. The error locator polynomial generator is an inversionless Berlekamp-Massey algorithm (iBMA), which calculates an error locator polynomial and a scratch polynomial. The error value relationship is based on the error locator polynomial and the scratch polynomial.
摘要:
A data encoding system for a data stream comprises an interleaving module that receives the data stream as N bit data blocks and that reverses positions of at least two of the N bits of selected ones of the data blocks. A generating module generates P error checking bits for each of the N bit data blocks. An insertion module receives the P error checking bits from the generating module and inserts the P error checking bits into the corresponding data block received from the interleaving module.
摘要:
A Reed-Solomon decoder includes an inversionless Berlekamp-Massey algorithm (iBMA) circuit with a pipelined feedback loop. A first polynomial generator generates error locator polynomial values. A discrepancy generator generates discrepancy values based on the error locator polynomial values and the scratch polynomial values. Arithmetic units are used to generate the discrepancy values are also used to generate the error locator polynomial to reduce circuit area. A first delay circuit delays the discrepancy values. A feedback loop feeds back the delayed discrepancy values to the error locator polynomial generator. An error location finder circuit communicates with the iBMA circuit and identifies error locations. An error value computation circuit communicates with at least one of the error location finder circuit and the iBMA circuit and generates error values.
摘要:
A communications channel includes a buffer that receives symbols of user data including a plurality of M-bit symbols. A seed selector receives the M-bit symbols of the user data, selectively removes symbols of the user data from a seed set, and selects a scrambling seed from symbols remaining in the seed set. A scrambling device that communicates with the seed selector and the data buffer generates scrambled user data using the user data and the selected scrambling seed. A Hamming weight coding device determines a Hamming weight of symbols of the scrambled user data and selectively codes the symbols depending upon the determined Hamming weight.
摘要:
A finite field arithmetic circuit with reduced power dissipation has first and second circuit inputs. A first circuit transition probability of the first circuit input is calculated by applying a random input to the first circuit input and a constant input to the second circuit input. A second circuit transition probability of the second circuit input is calculated by applying a constant input to the first circuit input and a random input to the second circuit input. One of the first and second circuit inputs having a lower circuit transition probability is selected. A first time-varying rate that a first input signal to the arithmetic circuit varies is compared with a second time-varying rate that a second input signal to the arithmetic circuit varies. The input signal having a higher time-varying rate is selected and coupled to the selected one of the first and second circuit inputs.