Action Prediction and Identification Temporal User Behavior
    1.
    发明申请
    Action Prediction and Identification Temporal User Behavior 有权
    行动预测和识别时间用户行为

    公开(公告)号:US20120123993A1

    公开(公告)日:2012-05-17

    申请号:US12947871

    申请日:2010-11-17

    IPC分类号: G06N7/02

    摘要: User behavior modeling can include determining temporal- or time-based actions performed by various users. From the mined temporal-based user actions, future actions can be predicted. Certain implementations include providing information and/or services based on the predicted future actions. Some implementations, include providing relevant information, services, and/or goods regarding the predicted future action.

    摘要翻译: 用户行为建模可以包括确定由各种用户执行的时间或时间的动作。 从开采的基于时间的用户操作,可以预测未来的行动。 某些实施方式包括基于预测的未来行动来提供信息和/或服务。 一些实施方式包括提供有关预测未来行动的相关信息,服务和/或商品。

    CLICK MODEL THAT ACCOUNTS FOR A USER'S INTENT WHEN PLACING A QUIERY IN A SEARCH ENGINE
    2.
    发明申请
    CLICK MODEL THAT ACCOUNTS FOR A USER'S INTENT WHEN PLACING A QUIERY IN A SEARCH ENGINE 审中-公开
    在搜索引擎中放置校园时,用户的信息的点击模式

    公开(公告)号:US20120143789A1

    公开(公告)日:2012-06-07

    申请号:US12957521

    申请日:2010-12-01

    IPC分类号: G06F17/30 G06F15/18 G06N5/02

    CPC分类号: G06F16/951

    摘要: A method of generating training data for a search engine begins by retrieving log data pertaining to user click behavior. The log data is analyzed based on a click model that includes a parameter pertaining to a user intent bias representing the intent of a user in performing a search in order to determine a relevance of each of a plurality of pages to a query. The relevance of the pages is then converted into training data.

    摘要翻译: 生成搜索引擎的训练数据的方法从检索与用户点击行为有关的日志数据开始。 基于点击模型分析日志数据,所述点击模型包括与用户意图偏差相关的参数,所述参数表示用户执行搜索的意图,以便确定多个页面中的每一个与查询的相关性。 然后将页面的相关性转换为训练数据。

    Click modeling for URL placements in query response pages
    3.
    发明授权
    Click modeling for URL placements in query response pages 有权
    点击查询响应页面中的网址展示位置的建模

    公开(公告)号:US08589228B2

    公开(公告)日:2013-11-19

    申请号:US12795631

    申请日:2010-06-07

    CPC分类号: G06Q30/02 G06Q30/0255

    摘要: A “General Click Model” (GCM) is constructed using a Bayesian network that is inherently capable of modeling “tail queries” by building the model on multiple attribute values that are shared across queries. More specifically, the GCM learns and predicts user click behavior towards URLs displayed on a query results page returned by a search engine. Unlike conventional click modeling approaches that learn models based on individual queries, the GCM learns click models from multiple attributes, with the influence of different attribute values being measured by Bayesian inference. This provides an advantage in learning that enables the GCM to achieve improved generalization and results, especially for tail queries, than conventional click models. In addition, most conventional click models consider only position and the identity of URLs when learning the model. In contrast, the GCM considers more session-specific attributes in making a final prediction for anticipated or expected user click behaviors.

    摘要翻译: 使用贝叶斯网络构建“通用点击模型”(GCM),该贝叶斯网络本质上能够通过在查询之间共享的多个属性值上建立模型来建模“尾部查询”。 更具体地说,GCM学习并预测用户对搜索引擎返回的查询结果页面上显示的URL的点击行为。 不同于传统的点击建模方法,基于个别查询的模型,GCM从多个属性学习点击模型,不同属性值的影响是通过贝叶斯推理来衡量的。 这提供了学习的优势,使得GCM能够实现改进的泛化和结果,特别是尾部查询,而不是传统的点击模型。 此外,大多数传统的点击模型只在学习模型时考虑URL的位置和身份。 相比之下,GCM考虑更多的会话特定属性来对预期或预期的用户点击行为进行最终预测。

    Action prediction and identification temporal user behavior
    4.
    发明授权
    Action prediction and identification temporal user behavior 有权
    行动预测和识别临时用户行为

    公开(公告)号:US08412665B2

    公开(公告)日:2013-04-02

    申请号:US12947871

    申请日:2010-11-17

    IPC分类号: G06F9/44 G06N7/02 G06N7/06

    摘要: User behavior modeling can include determining temporal- or time-based actions performed by various users. From the mined temporal-based user actions, future actions can be predicted. Certain implementations include providing information and/or services based on the predicted future actions. Some implementations, include providing relevant information, services, and/or goods regarding the predicted future action.

    摘要翻译: 用户行为建模可以包括确定由各种用户执行的时间或时间的动作。 从开采的基于时间的用户操作,可以预测未来的行动。 某些实施方式包括基于预测的未来行动来提供信息和/或服务。 一些实施方式包括提供有关预测未来行动的相关信息,服务和/或商品。

    RELEVANCE OF SEARCH RESULTS DETERMINED FROM USER CLICKS AND POST-CLICK USER BEHAVIOR OBTAINED FROM CLICK LOGS
    5.
    发明申请
    RELEVANCE OF SEARCH RESULTS DETERMINED FROM USER CLICKS AND POST-CLICK USER BEHAVIOR OBTAINED FROM CLICK LOGS 审中-公开
    从用户点击确定的搜索结果的相关性和点击记录获得的点击后用户行为

    公开(公告)号:US20120143790A1

    公开(公告)日:2012-06-07

    申请号:US12957692

    申请日:2010-12-01

    IPC分类号: G06N5/02 G06F15/18

    CPC分类号: G06N7/005 G06F16/951

    摘要: Data from a click log may be used to generate training data for a search engine. User click behavior and user post-click behavior may be used to assess the relevance of a page to a query. Labels for training data may be generated based on data from the click log. The labels may pertain to the relevance of a page to a query. For example, user post-click behavior that may be examined includes the amount of time that a user remains on a target page when a user clicks one of the search results.

    摘要翻译: 来自点击日志的数据可用于生成搜索引擎的训练数据。 用户单击行为和用户点击后行为可用于评估页面与查询的相关性。 可以根据点击日志的数据生成训练数据的标签。 标签可能与页面与查询的相关性有关。 例如,可以检查的用户点击后行为包括当用户单击其中一个搜索结果时用户保留在目标页面上的时间量。

    CLICK MODELING FOR URL PLACEMENTS IN QUERY RESPONSE PAGES
    6.
    发明申请
    CLICK MODELING FOR URL PLACEMENTS IN QUERY RESPONSE PAGES 有权
    点击建模查询响应页面中的网址

    公开(公告)号:US20110302031A1

    公开(公告)日:2011-12-08

    申请号:US12795631

    申请日:2010-06-07

    IPC分类号: G06F15/18 G06Q30/00 G06N5/02

    CPC分类号: G06Q30/02 G06Q30/0255

    摘要: A “General Click Model” (GCM) is constructed using a Bayesian network that is inherently capable of modeling “tail queries” by building the model on multiple attribute values that are shared across queries. More specifically, the GCM learns and predicts user click behavior towards URLs displayed on a query results page returned by a search engine. Unlike conventional click modeling approaches that learn models based on individual queries, the GCM learns click models from multiple attributes, with the influence of different attribute values being measured by Bayesian inference. This provides an advantage in learning that enables the GCM to achieve improved generalization and results, especially for tail queries, than conventional click models. In addition, most conventional click models consider only position and the identity of URLs when learning the model. In contrast, the GCM considers more session-specific attributes in making a final prediction for anticipated or expected user click behaviors.

    摘要翻译: 使用贝叶斯网络构建“通用点击模型”(GCM),该贝叶斯网络本质上能够通过在查询之间共享的多个属性值上构建模型来建模“尾部查询”。 更具体地说,GCM学习并预测用户对搜索引擎返回的查询结果页面上显示的URL的点击行为。 不同于传统的点击建模方法,基于个别查询的模型,GCM从多个属性学习点击模型,不同属性值的影响是通过贝叶斯推理来衡量的。 这提供了学习的优势,使得GCM能够实现改进的泛化和结果,特别是尾部查询,而不是传统的点击模型。 此外,大多数传统的点击模型只在学习模型时考虑URL的位置和身份。 相比之下,GCM考虑更多的会话特定属性来对预期或预期的用户点击行为进行最终预测。

    Training SVMs with Parallelized Stochastic Gradient Descent
    7.
    发明申请
    Training SVMs with Parallelized Stochastic Gradient Descent 有权
    训练具有并行随机梯度下降的SVM

    公开(公告)号:US20110295774A1

    公开(公告)日:2011-12-01

    申请号:US12790532

    申请日:2010-05-28

    IPC分类号: G06F15/18

    CPC分类号: G06K9/6269 G06N99/005

    摘要: Techniques for training a non-linear support vector machine utilizing a stochastic gradient descent algorithm are provided. The computations of the stochastic gradient descent algorithm are parallelized via a number of processors. Calculations of the stochastic gradient descent algorithm on a particular processor may be combined according to a packing strategy before communicating the results of the calculations with the other processors.

    摘要翻译: 提供了利用随机梯度下降算法训练非线性支持向量机的技术。 随机梯度下降算法的计算通过多个处理器并行化。 在将计算结果与其他处理器通信之前,可以根据打包策略来组合特定处理器上的随机梯度下降算法。

    Training SVMs with parallelized stochastic gradient descent
    8.
    发明授权
    Training SVMs with parallelized stochastic gradient descent 有权
    用并行随机梯度下降训练SVM

    公开(公告)号:US08626677B2

    公开(公告)日:2014-01-07

    申请号:US12790532

    申请日:2010-05-28

    IPC分类号: G06F15/18

    CPC分类号: G06K9/6269 G06N99/005

    摘要: Techniques for training a non-linear support vector machine utilizing a stochastic gradient descent algorithm are provided. The computations of the stochastic gradient descent algorithm are parallelized via a number of processors. Calculations of the stochastic gradient descent algorithm on a particular processor may be combined according to a packing strategy before communicating the results of the calculations with the other processors.

    摘要翻译: 提供了利用随机梯度下降算法训练非线性支持向量机的技术。 随机梯度下降算法的计算通过多个处理器并行化。 在将计算结果与其他处理器通信之前,可以根据打包策略来组合特定处理器上的随机梯度下降算法。

    SMART USER-CENTRIC INFORMATION AGGREGATION
    9.
    发明申请
    SMART USER-CENTRIC INFORMATION AGGREGATION 有权
    SMART用户中心信息聚合

    公开(公告)号:US20140052751A1

    公开(公告)日:2014-02-20

    申请号:US13586711

    申请日:2012-08-15

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30032 G06F17/30905

    摘要: A smart user-centric information aggregation system allows a user to define a region of content displayed in a display of a device and performs information aggregation on behalf of the user. The smart user-centric information aggregation system searches, aggregates and groups information related to content included in the region of content for the user while the user can continue to perform his/her original course of actions without interruption. After finding information related to the desired content, the smart user-centric information aggregation system may notify the user and present the found information to the user upon receiving confirmation from the user. The smart user-centric information aggregation system may continue to find new related information and update the presentation with the newly found information periodically, in some instances without user intervention or input.

    摘要翻译: 以智能用户为中心的信息聚合系统允许用户定义显示在设备显示器中的内容区域,并代表用户执行信息聚合。 智能用户为中心的信息聚合系统在用户可以继续执行他/她的原始行为过程而不间断地搜索,聚合和分组与用户内容区域中包含的内容相关的信息。 在找到与期望内容相关的信息之后,智能用户为中心的信息聚合系统可以在接收到来自用户的确认时通知用户并向用户呈现找到的信息。 以智能用户为中心的信息聚合系统可以继续寻找新的相关信息,并且在某些情况下,不需要用户干预或输入,定期更新新发现的信息。

    Mining new words from a query log for input method editors
    10.
    发明授权
    Mining new words from a query log for input method editors 有权
    从输入法编辑器的查询日志挖掘新单词

    公开(公告)号:US08407236B2

    公开(公告)日:2013-03-26

    申请号:US12244774

    申请日:2008-10-03

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30731

    摘要: Described is a technology in which new words (including a phrase or set of Chinese characters) are mined from a query log. The new words may be added to (or otherwise supplement) an IME dictionary. A set of candidate queries may be selected from the log based upon market (e.g., the Chinese market) and/or by language. From this set, various filtering steps are performed to locate only new words that are frequently in used. For example, only frequent queries are kept for further processing, which may include filtering out queries based on length (e.g., less than two or greater than eight Chinese characters), and/or filtering out queries based on too many stop-words in the query. Processing may also include filtering out a query that is a substring of a larger query, or vice-versa. Also described is Pinyin-based clustering and filtering, and filtering out queries already handled in the dictionary.

    摘要翻译: 描述了从查询日志中挖出新词(包括短语或一组汉字)的技术。 新词可能会添加到(或以其他方式补充)IME词典。 可以基于市场(例如,中国市场)和/或按语言从日志中选择一组候选查询。 从该集合中,执行各种过滤步骤以仅定位经常使用的新词。 例如,只有频繁的查询被保留用于进一步的处理,其可以包括基于长度(例如,少于两个或大于八个汉字)过滤掉查询,和/或基于过多的停止词过滤掉查询 查询。 处理还可以包括过滤掉作为较大查询的子串的查询,反之亦然。 还描述了基于拼音的群集和过滤,并且过滤掉已经在字典中处理的查询。