摘要:
A driving circuit of active matrix organic electroluminescence diode is disclosed. Each pixel includes three TFTs and two capacitors. A gate of scan reset TFT is controlled by the scan line of the row where the pixel is located and a drain of scan reset TFT is connected to the data line of the column where the pixel is situated. Detect TFT is controlled by one Threshold-Lock line. One capacitor Cd is used to store data voltage (Vdata) of image signals and the other capacitor Ct is used to store the threshold voltage (Vth) of driving TFT. Therefore, the sum of capacitors Cd and Ct will drive the driving TFT to output the corresponding current to the organic electroluminescence element.
摘要:
A driving circuit of active matrix organic electroluminescence diode is disclosed. Each pixel includes three TFTs and two capacitors. A gate of scan reset TFT is controlled by the scan line of the row where the pixel is located and a drain of scan reset TFT is connected to the data line of the column where the pixel is situated. Detect TFT is controlled by one Threshold-Lock line. One capacitor Cd is used to store data voltage (Vdata) of image signals and the other capacitor Ct is used to store the threshold voltage (Vth) of driving TFT. Therefore, the sum of capacitors Cd and Ct will drive the driving TFT to output the corresponding current to the organic electroluminescence element.
摘要:
The present invention relates to an uniformly active light emitting diode drive circuit. This invention provides a 3T1C circuit structure in the emitting pixel and an additional data capacitors connecting to all the pixels are picked out and located on one side of the display panel. In addition, the connecting lines to the OLED on every pixel are all collected to one end of a transistor Moc on the other side of the display panel. Through the arrangement, it is intended that the aperture ratio of the organic electroluminescent (OLED) device can be largely improved. Moreover, an additional by-pass current transistor in parallel with data capacitor (Cd) in a data generator region outside of the pixel array can by-pass the previous left current in the circuit and thus enhance the contrast ratio of the emitting pixel.
摘要:
A pixel circuit related to an organic light-emitting diode (OLED) is provided. When signals having appropriate operation waveforms are supplied, the circuit configuration (7T1C or 5T1C) of the pixel circuit keeps the current flowing through an OLED unaffected by the impact of IR drop on a power supply voltage Vdd (or mitigates the impact of the power supply voltage Vdd on the current) and prevents the current flowing through the OLED from changing with the Vth shift of a TFT for driving the OLED. Thereby, the luminance uniformity of an OLED display adopting the pixel circuit is greatly improved.
摘要:
An organic light emitting diode (OLED) pixel circuit is provided by the invention. If a circuit configuration (5T2C) thereof collocates with suitable operation waveforms, a current flowing through an OLED in the OLED pixel circuit may not be changed with a power supply voltage (Vdd) influenced by an IR drop, and may not be varied with a threshold voltage (Vth) shift of a thin-film-transistor (TFT) configured for driving the OLED. Accordingly, brightness uniformity of an OLED display applying the same can be substantially improved.
摘要:
A pixel circuit related to an organic light emitting diode (OLED) is provided, and if a circuit configuration (5T1C) thereof collocates with suitable operation waveforms, a current flowing through an OLED in the OLED pixel circuit is not varied along with a threshold voltage (Vth) shift of a TFT used for driving the OLED. Accordingly, the brightness uniformity of the applied OLED display is substantially improved.
摘要:
An organic light-emitting diode (OLED) pixel circuit is provided, and if a circuit configuration (5T1C) thereof collocates with suitable operation waveforms, a current flowing through an OLED in the OLED pixel circuit may not be changed along with the power supply voltage (Vdd) which may be influenced by an IR drop, and may not be varied along with the threshold voltage (Vth) shift of a thin film transistor used for driving the OLED. Accordingly, the brightness uniformity of the applied OLED display can be substantially improved.
摘要:
A display structure includes a first transparent substrate, a second transparent substrate opposite the first transparent substrate, a display medium interposed between the first transparent substrate and the second transparent substrate, at least one first thin film transistor formed on the first transparent substrate, a first insulation layer formed on the first transparent substrate, a first electrode layer formed on the first insulation layer, an organic light-emitting layer formed on the first electrode layer and in a region not overlapping the first thin film transistor, a cathode layer formed on the organic light-emitting layer, and a second electrode layer formed on the second transparent substrate.
摘要:
A pixel circuit relating to an organic light emitting diode (OLED) is provided by the invention, and if the circuit configuration (5T1C or 6T1C) thereof collaborates with suitable operation waveforms, the current flowing through an OLED in the OLED pixel circuit is not be changed along with variation of a power supply voltage (Vdd) influenced by the IR drop, and is not be varied along with the threshold voltage (Vth) shift of a TFT used for driving the OLED. Accordingly, the brightness uniformity of the applied OLED display can be substantially improved.
摘要:
A flat display structure includes a substrate, a pixel array, a first-stage shift register and a second-stage shift register. The substrate includes a signal line. The pixel array is disposed on the substrate. The first-stage shift register is disposed at a first side of the pixel array and coupled to the signal line for outputting a first-stage scan signal to the pixel array according to trigger of a first start pulse. The second-stage shift register is disposed at a second side of the pixel array and coupled to the signal line for receiving a second start pulse via the signal line.