Abstract:
A system and method for detecting cancerous tissue in a subject is provided. More specifically, the present invention provides a system and method for non-invasively identifying cancerous regions in breast tissue. The system includes a sensor system, a drive system, and a processor. The sensor system includes a sensor plate and, similarly, the drive system includes a drive plate. A time-varying voltage is applied to the drive plate and induced currents are subsequently measured by the sensor plate. Signals indicative of an induced current are then acquired and analyzed by the processor to determine the spatial location of anomalous regions. Subsequently, the anomalous regions are characterized as either cancerous or non-cancerous.
Abstract:
A device for characterizing ex vivo tissue employs a set of independent electrodes that may be used to scan the tissue by moving a voltage gradient across the tissue surface acquiring impedance spectrographs that may be mapped to an image.
Abstract:
A method for characterizing tissues within a subject as cancerous or non-cancerous includes determining the electrical properties of the subject. The electrical properties of the subject are fit to a model and a specific range of a set of characteristic frequencies of each tissue is then calculated. Each tissue is finally characterized as cancerous or non-cancerous if the specific range of the set of characteristic frequencies inside or outside, respectively, a pre-determined spread of characteristic frequencies.
Abstract:
An electrical property imaging system includes an array of sensors placed around an object to measure the surface charges thereon as a sinusoidal voltage is applied thereacross. The resulting distribution of charges inside the object are calculated using a stored charge correlation matrix. Electrical property images are produced from the internal charge distribution image.
Abstract:
Enhanced information on the electrical properties of the subregions of a sample is generated by an enhanced tomography (EPET) apparatus connected to a tomographic device, wherein the EPET apparatus holds a voltage constant and measures the electrical current of the sample inserted within the EPET apparatus. A matching medium is applied to the sample such that when the sample is placed within an electromagnetic field generated by the EPET apparatus, the matching medium contacts the segmented sensor plates of the EPET apparatus and allows the detection of the net total charges Q on the surface of the sample. The EPET apparatus uses these net total charges Q in the calculation of the additional information on the electrical properties of the sample by using the scale factor method or the iterative correction method. The EPET apparatus and method has application in the medical imaging field, such as in the obtaining of enhanced dielectric constant and conductivity electrical properties values related to the imaging of the interior of the human body, e.g., in the determination of whether tissue is cancerous, dead or healthy.
Abstract:
A system and method for detecting cancerous tissue in a subject is provided. More specifically, the present invention provides a system and method for non-invasively identifying cancerous regions in breast tissue. The system includes a sensor system, a drive system, and a processor. The sensor system includes a sensor plate and, similarly, the drive system includes a drive plate. A time-varying voltage is applied to the drive plate and induced currents are subsequently measured by the sensor plate. Signals indicative of an induced current are then acquired and analyzed by the processor to determine the spatial location of anomalous regions. Subsequently, the anomalous regions are characterized as either cancerous or non-cancerous.
Abstract:
An electrical parameter imaging apparatus and method includes the acquisition of a charge distribution pattern on an array of electrodes that surround an object being imaged. In addition the exterior boundary, or contours of the object is measured by an array of light beams and associated light sensors. The contour measurement is employed to provide a first estimate of the object geometry needed to compute an electrical parameter image from the acquired charge distribution pattern.
Abstract:
The non-linear conductance and capacitance characteristics of electrically non-homogenous materials over a given frequency range are used to identify and analyze such materials.
Abstract:
A device and method for accurately characterizing tissue impedance employs multiple electrodes at a plurality of separation distances to cancel the effects of front end loading leakage currents and electrode polarization to improve the accuracy of sensitive impedance measurements used to identify cancerous tissues. These measurements may be automated over a range of frequencies.
Abstract:
Packaged materials are tested in a capacitive sensor which has plates whose spacing can be accurately adjusted, and whose plates are segmented so that selected segments can be employed. An a.c. voltage is applied across the capacitive plates at accurately known amplitude, phase, and frequency for a number of frequencies. A ratio bridge is tied to each number of frequencies. A ratio bridge is tied to each of the segments and provides outputs that reflect the a.c. voltage and current, both capacitive and ohmic. A zero-crossing detection method or time domain method can be employed to provide precise amplitude and phase, or a quadrature or phase-sensitive detection method can provide amplitude and phase, or a quadrature or phase-sensitive detection method can provide amplitude and phase of the a.c. current through each segment. Values of capacitance, conductance, frequency dependence of capacitance, and frequency dependent of conductance are compared to stored values of a number of known objects of the target class.