摘要:
The present invention relates to a circuit for processing radio frequency signals. The resonant circuit includes a substrate. The substrate can be a meta material and can incorporate at least one substrate layer. A resonant line and at least one ground can be coupled to the substrate. An end of the resonant line can electrically shorted to the ground or electrically open with respect to ground. The substrate layer can include a first region with a first set of substrate properties and at least a second region with a second set of substrate properties. At least a portion of the resonant line can be coupled to the second region. The first and/or second set of substrate properties can be differentially modified to vary a permittivity and/or a permeability over a selected region. A third region can be provided with a third set of substrate properties as well.
摘要:
The invention concerns a dipole antenna of reduced size and with improved impedance bandwidth. The antenna is preferably formed on a dielectric substrate having a plurality of regions, each having a characteristic relative permeability and permittivity. First and second dipole radiating element defining conductive paths can be selectively formed on first characteristic regions of the substrate having a first characteristic permeability and first permittivity. A reactive coupling element can be interposed between the dipole radiating elements for reactively coupling the first dipole radiating element to the second dipole radiating element.
摘要:
A printed circuit for processing radio frequency signals includes a substrate including substrate regions upon which the printed circuit can be placed. The circuit is an interdigital filter including a plurality of resonator elements. The plurality of resonator line elements are at least partially coupled to respective substrate regions that have substrate characteristics that are each independently customizable. The circuit further comprises at least one ground or ground plane (50) coupled to the substrate.
摘要:
A slot fed microstrip antenna (100) provides improved efficiency through enhanced coupling of electromagnetic energy between the feed line (117) and the slot (106). The dielectric layer (105) between the feed line (117) and the slot (106) includes magnetic particles (114), the magnetic particles (114) preferably included in the dielectric junction region (113) between the microstrip feed line (117) and the slot (106). A high dielectric region is preferably also provided in the junction constant to further enhance the field concentration effect. The slot antenna (100) can be embodied as a microstrip patch antenna (200).
摘要:
A slot fed microstrip patch antenna (200) includes an electrically conducting ground plane (208), the ground plane (208) having at least one coupling slot (206) and at least a first patch radiator (209). An antenna dielectric substrate material (205) is disposed between the ground plane (208) and the first patch radiator (209), wherein at least a portion of the antenna dielectric (210) includes magnetic particles (214). A feed dielectric substrate (212) is disposed between a feed line (217) and the ground plane (208). Magnetic particles can also be used in the feed line (217) dielectric. Patch antennas according to the invention can be of a reduced size through use of high relative permittivity dielectric substrate portions, yet still be efficient through use of dielectrics including magnetic particles which permit impedance matching of dielectric medium interfaces, such as the feed line (217) into the slot (206).
摘要:
A printed circuit log periodic dipole array (LPDA) includes dipole elements with arms having reduced size through use of high effective permittivity substrate portions. The radiation efficiency degradation generally associated with use of a high permittivitty substrate can be reduced through addition of magnetic particles to provide enhanced permeability in the high permittivity regions. The substrate preferably includes meta-materials. The feed line can provide a broadband transformation by being configured as a plurality of segments having quarter wave electrical lengths.
摘要:
A reactive element of selected value is integrated within a circuit board substrate. At least one conductive path is provided for defining a circuit element. The conductive path is selectively formed on first characteristic regions of a circuit board substrate. The substrate in the first characteristic regions can have a first permeability and first permittivity. One or more reactive elements can be interposed between portions of the conductive path. In particular, the reactive element can be formed on a second characteristic region of the substrate having a second permittivity and second permeability. Either the first permittivity, the first permeability, or both characteristics of the first regions can be different respectively from the second permittivity and the second permeability of the second characteristic region of the substrate. Consequently, a desired reactance value for the reactive element can be determined at least partially by either the second relative permittivity or the second relative permeability.
摘要:
A printed circuit (100) for processing radio frequency signals includes a substrate (110) including substrate regions (101, 103, 105, 111, and 119) upon which the printed circuit can be placed. The circuit is a lowpass filter including a transformer line section (112), at least a first stub section (114 or 116), and transmission line sections (117) interconnecting the transformer line section with at least the first stub section. The transformer line section, the transmission line sections, and at least the first stub section are coupled to respective substrate regions that have substrate characteristics that are each independently customizable. The circuit further comprises at least one ground or ground plane (120) coupled to the substrate.
摘要:
An RF filter that includes a substrate having a plurality of regions, each having respective substrate properties including a relative permeability and a relative permittivity. At least one filter section is coupled to one of the regions of the substrate which has different substrate properties in comparison to other regions. Other filter sections can be coupled to other substrate regions having different substrate properties. The permeability and/or permittivity can be controlled by the addition of meta-materials to the substrate and/or by the creation of voids in the substrate. The RF filter can be a stepped impedance filter. One filter section includes a transmission line section having an impedance influenced by the region of the substrate on which the filter section is disposed. The transmission line section construction can be a microstrip, buried microstrip, or stripline. A supplemental layer of the substrate can be disposed beneath the filter section.
摘要:
A printed circuit for processing radio frequency signals includes a substrate including substrate regions upon which the printed circuit can be placed. The circuit is a coupled line filter including a plurality of resonator elements. The plurality of resonator line elements are at least partially coupled to respective substrate regions that have substrate characteristics that are each independently customizable. The circuit further comprises at least one ground or ground plane (50) coupled to the substrate.