摘要:
A TCP context is transferred to a Gi Optimizer to provide cooperative mobility management in a mobile data network with a breakout system. The breakout system includes an Iub Optimizer at the MIOP@NodeB, and the Gi Optimizer at the MIOP@Core. When a MIOP@NodeB detects a mobility event for a broken out user equipment (UE), the Iub optimizer in the MIOP@NodeB coordinates with the Gi optimizer to transfer the TCP/UDP connection established between the UE and the IuB Optimizer to the Gi Optimizer. After the transfer, the UE is served by the Gi Optimizer. The transfer of the TCP/UDP connection to the Gi optimizer may require tunnel stitching at the MIOP@RNC depending on the PDP context state and the RRC state of the UE.
摘要:
Mobile network services are performed at the edge in a flat mobile data network in a way that is transparent to most of the existing equipment in the mobile data network to reduce the load and increase efficiency on the mobile data network by breaking out data at the edge based on specific IP data flows. The mobile data network includes a radio access network and a core network. A first service mechanism in the radio access network breaks out data coming from a basestation based on breakout conditions, and performs one or more mobile network services. The second service mechanism determines what traffic satisfies breakout authorization criteria and informs the first service mechanism. The message from the second service mechanism triggers the first service mechanism to perform IP flow based breakout. An overlay network allows the first and second mechanisms to communicate with each other.
摘要:
Mobile network services are performed at the edge of a mobile data network in a way that is transparent to most of the existing equipment in the mobile data network. The mobile data network includes a radio access network and a core network. A first service mechanism in the radio access network breaks out data coming from a basestation, and performs one or more mobile network services at the edge of the mobile data network based on the broken out data. A second service mechanism in the core network receives data monitored during attach and Packet Data Protocol (PDP) context activation, and establishes sessions with components in the mobile data network that support charging and policy control for sessions broken out by the first service mechanism.
摘要:
Mobile network services are performed at the edge in a flat mobile data network in a way that is transparent to most of the existing equipment in the mobile data network to reduce the load and increase efficiency on the mobile data network by breaking out data at the edge based on specific IP data flows. The mobile data network includes a radio access network and a core network. A first service mechanism in the radio access network breaks out data coming from a basestation based on breakout conditions, and performs one or more mobile network services. The second service mechanism determines what traffic satisfies breakout authorization criteria and informs the first service mechanism. The message from the second service mechanism triggers the first service mechanism to perform IP flow based breakout. An overlay network allows the first and second mechanisms to communicate with each other.
摘要:
Lawful interception (LI) is supported on a flat mobile data network with breakout services at the basestation. A first service mechanism at the basestation is prevented from breaking out services for subscribers that are part of LI. A second service mechanism in the core network maintains a subscriber list of subscribers that are subject to LI. In response to a PDP context activation by a subscriber on the list, the second service mechanism does not supply PDP context information to the first service mechanism for data breakout thus preventing breakout for the subscriber subject to lawful interception.
摘要:
Mobile network services are performed at the edge of a mobile data network in a way that is transparent to most of the existing equipment in the mobile data network. The mobile data network includes a radio access network and a core network. A first service mechanism in the radio access network breaks out data coming from a basestation, and performs one or more mobile network services at the edge of the mobile data network based on the broken out data. A second service mechanism in the core network receives data monitored during attach and Packet Data Protocol (PDP) context activation, and establishes sessions with components in the mobile data network that support charging and policy control for sessions broken out by the first service mechanism.
摘要:
Lawful interception (LI) is supported on a flat mobile data network with breakout services at the basestation. A first service mechanism at the basestation is prevented from breaking out services for subscribers that are part of LI. A second service mechanism in the core network maintains a subscriber list of subscribers that are subject to LI. In response to a PDP context activation by a subscriber on the list, the second service mechanism does not supply PDP context information to the first service mechanism for data breakout thus preventing breakout for the subscriber subject to lawful interception.
摘要:
In a mobile data network with a breakout system, when data is broken out, the RLC function is split into two different flows, between the UE and the breakout system and between the breakout system and the RNC. These two flows are processed by different RLC functions that may drift apart and become out of synchronization resulting in errors that diminish the user's quality of experience. Other errors may also occur in communication on these two different flows. The breakout system attempts to correct these errors using data stored locally in communication data structures for the two data flows. If the errors cannot be corrected, the breakout system can initiate an RLC reset into both of these flows to resynchronize the data communication.
摘要:
A mobile data network includes a radio access network and a core network. A first service mechanism in the radio access network breaks out data coming from a basestation. When data is broken out by the first service mechanism, the data is delivered at the edge, which means the true activity of the channel is not visible to the core network. The reduction of data in the core network due to serving data at the edge risks causing a switch from a high-speed channel to a low-speed channel by the mechanism in the core network that monitors and assigns channel speeds. In order to maintain the high-speed channel, the on-going data rate for a subscriber session is monitored and channel maintenance traffic is injected towards and from the radio network controller (in both directions). The amount of channel maintenance traffic depends on thresholds that determine a desired data rate.
摘要:
Macro diversity is managed at the edge in a mobile data network with edge data Macro diversity is managed at the edge in a mobile data network with edge data breakout with a component in a Mobile Internet Optimization Platform (MIOP) referred to as MIOP@NodeB. A set of NodeBs that are in simultaneous communication with user equipment are defined as an active set. One of the MIOP@NodeBs of the active set is selected as a master, with the remaining MIOP@NodeBs in the active set being designated slaves. During uplink of signaling data, the signaling data is sent from the UE to all the NodeBs in the active set, which send the signaling data to each of their corresponding MIOP@NodeBs. Each slave MIOP@NodeB sends its data to the master MIOP@NodeB, which combines the data from all into a best packet.