Abstract:
An apparatus for reliably monitoring a flame of a post-mixed burner without significantly altering the flame characteristics by forming a small but intense signal within the burner which is unaffected by furnace conditions and which corresponds to the actual flame.
Abstract:
An ignition system for post-mixed gas burner which achieves reliable ignition without requiring an expensive spark source protection device, or a means to promote fuel-oxidant mixing, or a large amount of electricity, or a separate pilot light.
Abstract:
Combustion of hydrocarbon fuel is achieved with less formation of NOx by feeding the fuel into a slightly oxygen-enriched atmosphere, and separating air into oxygen-rich and nitrogen-rich streams which are fed separately into the combustion device.
Abstract:
A nozzle and gas injection method using the nozzle wherein the nozzle comprises a section of porous material. Gas passes through one or more passageways running the length of the porous material section and also diffuses through the porous material section exiting across the nozzle face. This gas passing through the face serves to keep deleterious material, such as zone vapors, from contacting and fouling the nozzle.
Abstract:
A post-mixed burner having a cooling system which brings cooling water preferably from the area of the fuel tube, across the area of oxidant passages, proximate the burner face, and out of the burner preferably in the outermost conduit.
Abstract:
A burner and method enabling operation of a post-mixed burner having radially spaced fuel and main oxidant injection points with a stable flame without the need of a separate oxidant annulus proximate the fuel stream characterized by defined relationships enabling passing stabilizing oxidant from the main oxidant stream into the fuel stream upstream of their injection into the combustion zone wherein the stabilizing oxidant velocity decreases from that of the main oxidant and the stabilizing oxidant passage flow area increases at the fuel stream communication with respect to an upstream restriction.
Abstract:
NOx formation in the combustion of solid hydrocarbonaceous fuel such as coal is reduced by obtaining, from the incoming feed stream of fuel solids and air, a stream having a ratio of fuel solids to air that is higher than that of the feed steam, and injecting the thus obtained stream and a small amount of oxygen to a burner where the fuel solids are combusted.
Abstract:
A combustion method wherein high velocity fuel is injected into a cavity recessed from a furnace zone for flow into the furnace zone, low velocity oxidant fluid is injected into the cavity for coaxial flow with the fuel, and the resulting combusting fuel and oxygen has imparted to it an angular component by operation of swirling oxygen flow and/or outwardly angled fuel flow, enabling control of the high velocity flame length.
Abstract:
A pressurized cavity is provided around at least a portion or all of a regenerator, within which gas such as flue gas is maintained at a pressure in excess of the pressure within the regenerator, to protect against leakage of gas through the walls of the regenerator.
Abstract:
A pressurized cavity is provided around at least a portion or all of a regenerator, within which gas such as flue gas is maintained at a pressure in excess of the pressure within the regenerator, to protect against leakage of gas through the walls of the regenerator.