摘要:
A programmable device includes a substrate (10); an insulator (13) on the substrate; an elongated semiconductor material (12) on the insulator, the elongated semiconductor material having first and second ends, and an upper surface S; the first end (12a) is substantially wider than the second end (12b), and a metallic material is disposed on the upper surface; the metallic material being physically migratable along the upper surface responsive to an electrical current I flowable through the semiconductor material and the metallic material.
摘要:
A programmable device includes a substrate (10); an insulator (13) on the substrate; an elongated semiconductor material (12) on the insulator, the elongated semiconductor material having first and second ends, and an upper surface S; the first end (12a) is substantially wider than the second end (12b), and a metallic material is disposed on the upper surface; the metallic material being physically migratable along the upper surface responsive to an electrical current I flowable through the semiconductor material and the metallic material.
摘要:
A programmable device includes a substrate (10); an insulator (13) on the substrate; an elongated semiconductor material (12) on the insulator, the elongated semiconductor material having first and second ends, and an upper surface S; the first end (12a) is substantially wider than the second end (12b), and a metallic material is disposed on the upper surface; the metallic material being physically migratable along the upper surface responsive to an electrical current I flowable through the semiconductor material and the metallic material.
摘要:
A programmable device includes a substrate (10); an insulator (13) on the substrate; an elongated semiconductor material (12) on the insulator, the elongated semiconductor material having first and second ends, and an upper surface S; the first end (12a) is substantially wider than the second end (12b), and a metallic material is disposed on the upper surface; the metallic material being physically migratable along the upper surface responsive to an electrical current I flowable through the semiconductor material and the metallic material.
摘要:
A programmable device includes a substrate (10); an insulator (13) on the substrate; an elongated semiconductor material (12) on the insulator, the elongated semiconductor material having first and second ends, and an upper surface S; the first end (12a) is substantially wider than the second end (12b), and a metallic material is disposed on the upper surface; the metallic material being physically migratable along the upper surface responsive to an electrical current I flowable through the semiconductor material and the metallic material.
摘要:
The present invention provides an integrated circuit which comprises a substrate having a plurality of device regions formed therein, said plurality of device regions being electrically isolated from each other by shallow trench isolation (STI) regions and said plurality of device regions each having opposing edges abutting its corresponding STI region; selected ones of said devices regions having a preselected first device width such that an oxide layer formed thereon includes substantially thicker perimeter regions, along said opposing edges, compared to a thinner central region that does not abut its corresponding STI region; and selected other ones of the device regions having a preselected device width substantially narrower in width than the first device width such that an oxide layer formed thereon includes perimeter regions, along opposing edges, that abut each other over its central region thereby preventing formation of a corresponding thinner central region.
摘要:
The present invention provides an integrated circuit which comprises a substrate having a plurality of device regions formed therein, said plurality of device regions being electrically isolated from each other by shallow trench isolation (STI) regions and said plurality of device regions each having opposing edges abutting its corresponding STI region; selected ones of said devices regions having a preselected first device width such that an oxide layer formed thereon includes substantially thicker perimeter regions, along said opposing edges, compared to a thinner central region that does not abut its corresponding STI region; and selected other ones of the device regions having a preselected device width substantially narrower in width than the first device width such that an oxide layer formed thereon includes perimeter regions, along opposing edges, that abut each other over its central region thereby preventing formation of a corresponding thinner central region.
摘要:
An antifuse device (120) that includes a bias element (124) and an programmable antifuse element (128) arranged in series with one another so as to form a voltage divider having an output node (F) located between the bias and antifuse elements. When the antifuse device is in its unprogrammed state, each of the bias element and antifuse element is non-conductive. When the antifuse device is in its programmed state, the bias element remains non-conductive, but the antifuse element is conductive. The difference in the resistance of the antifuse element between its unprogrammed state and programmed state causes the difference in voltages seen at the output node to be on the order of hundreds of mili-volts when a voltage of 1 V is applied across the antifuse device. This voltage difference is so high that it can be readily sensed using a simple sensing circuit (228).
摘要:
Techniques and systems whereby operation of and/or access to particular features of an electronic device may be controlled after the device has left the control of the manufacturer are provided. The operation and/or access may be provided based on values stored in non-volatile storage elements, such as electrically programmable fused (eFUSES).
摘要:
A programmable element that has a first diode having an electrode and a first insulator disposed between the substrate and said electrode of said first device, said first insulator having a first value of a given characteristic, and an FET having an electrode and a second insulator disposed between the substrate and said electrode of said second device, said second insulator having a second value of said given characteristic that is different from said first value. The electrodes of the diode and the FET are coupled to one another, and a source of programming energy is coupled to the diode to cause it to permanently decrease in resistivity when programmed. The programmed state of the diode is indicated by a current in the FET, which is read by a sense latch. Thus a small resistance change in the diode translates to a large signal gain/change in the latch. This allows the diode to be programmed at lower voltages.