摘要:
The invention provide an optical fiber transmitter by both suppressing stimulated Brillouin scattering (SBS) effect and composite second-order (CSO) distortions at an optimized condition. The optical fiber transmitter includes a frequency modulator generating a first tone microwave with frequency f1 coupled to a laser source, and a phase modulator generating a second tone microwave with frequency f2 coupled to an external phase modulator, so as to broaden the modulated light spectrum. The first tone microwave with frequency f1 is set to be greater than 2 to 3 times of the highest frequency content in the modulating signals. The second tone microwave with frequency f2 is designed to be close to a harmonic frequency of f1 and no less than three times of f1. The first tone microwave with frequency f1 and a second frequency f2 are inputted to two power amplifiers, respectively, and then are respectively inputted to a laser source and an external phase modulator. These two power amplifiers are controlled by an microprocessor to automatically adjust a desired phase modulation index at 1.4 for the optical fiber transmitter with a repeaterless design or at an desired index depending on the desired transmission distance in a repeater design. The external phase modulator is coupled to a pare of fiber amplifiers for the repeaterless design or several pairs of fiber amplifers coupled in series for the repeater design. The last pair of the fiber amplifiers are coupled to optical receivers.
摘要:
An optical communication device includes a top cover, a bottom cover, a circuit board and an electrostatic discharge element. The bottom cover is disposed opposite to the top cover, and an accommodating space is formed between the top and bottom covers. The circuit board is disposed in the accommodating space. The electrostatic discharge element is disposed on the circuit board and electrically connected to the circuit board.
摘要:
An optical communication device includes a top cover, a bottom cover, a circuit board and an electrostatic discharge element. The bottom cover is disposed opposite to the top cover, and an accommodating space is formed between the top and bottom covers. The circuit board is disposed in the accommodating space. The electrostatic discharge element is disposed on the circuit board and electrically connected to the circuit board.
摘要:
An optical transceiver disposed within a cage includes a main body, a handle and a sliding element. The handle is coupled with the main body. The sliding element is secured to the handle and has an arm which is slidably disposed in a track of the main body. When the handle is rotated, the sliding element slides along the track.
摘要:
An optical transceiver module for transmitting an optical signal includes a receiver, a clock data recovery circuit and a controller. The receiver receives the optical signal and converts the optical signal into an electric signal. The clock data recovery circuit receives the electric signal and recovers the clock and data of the electric signal. The controller is electrically connected with and monitors the clock data recovery circuit. Also, a control method of an optical transceiver module is provided.
摘要:
A packaging method of the optical transceiver module for transmitting optical signals is disclosed. The invention includes a base, a case, a transmission unit and receiving unit. The transmission unit and the receiving unit contain a circuit board, respectively. The base provides two fixing positions for the installation of the two circuit boards. The two circuit boards are installed horizontally and vertically, respectively. This design increase the utilization of the inner space providing ideal shielding for the elements and circuit boards. A central beam is used to fix the structure and case in a drawable way like a matchbox. This reduces covered area of the circuit board, making the elements easy to be tested and assembled.
摘要:
A light transceiver module is designed for electronic devices. It forms an electric connection with the electric connector of the electronic device. The light transceiver module contains a base, a light-emitting device for providing optical signals, a light-receiving device for receiving optical signals, and a main circuit board. The base supports the light-emitting device, the light-receiving device, and the main circuit board. The main circuit board has a pluggable electric connector for connections with the electric connector of the electronic device. The light transceiver module can be used to simplify and optimize the devices using it.
摘要:
A calibration method of an optical transceiver module includes the steps of receiving an input voltage, detecting an optical signal for generating an input power based on the optical signal, generating a compensating power based on the input voltage, and generating a calibrating power based on the compensating power and the input power.
摘要:
An optical communication module includes a driving unit, an optical transmitting unit, a control unit and a signal transform control unit. The driving unit outputs a bias signal and a modulation signal in accordance with a bias control signal and a modulation control signal. The optical transmitting unit is electrically connected to the driving unit, outputs an optical signal in accordance with the bias signal and the modulation signal, and generates a feedback signal. The signal transform control unit is electrically connected to the driving unit and generates the bias control signal and the modulation control signal to be inputted to the driving unit. The control unit is electrically connected to the optical transmitting unit and the signal transform control unit, and controls the signal transform control unit in accordance with the feedback signal. A control method of the optical communication module is also disclosed.
摘要:
A calibration method of an optical transceiver module includes the steps of receiving an input voltage, detecting an optical signal for generating an input power based on the optical signal, generating a compensating power based on the input voltage, and generating a calibrating power based on the compensating power and the input power.