摘要:
A vibratory transducer comprises a flow tube for conducting the fluid flowing in a pipe. The flow tube communicates with the pipe via an inlet-side tube section and an outlet-side tube section. An antivibrator is mechanically connected with the flow tube by an inlet-side coupler and an outlet-side coupler. For driving flow tube and antivibrator at an excitation frequency the transducer comprising an excitation system and for sensing inlet-side and outlet-side vibrations of the flow tube the transducer comprising a sensor system. An internal system formed by the flow tube, the antivibrator, the excitation system, and the sensor system, oscillating about a longitudinal axis of the transducer which is essentially in alignment with the inlet-side tube sections, forces a torsion of the couplers about the longitudinal axis and an essentially torsional elastic deformation of the inlet-side and outlet-side tube sections. The couplers are so dimensioned that an inherent torsion eigenmode of the inlet-side coupler and the inlet-side tube section has a natural frequency approximately equal to the excitation frequency, and an inherent torsion eigenmode of the outlet-side coupler and outlet-side tube section has a natural frequency essentially equal to the natural frequency of the inlet-side inherent torsion eigenmode.
摘要:
A measuring transducer comprises a transducer housing, of which an inlet-side housing end is formed by means of an inlet-side flow divider having eight, mutually spaced flow openings and an outlet-side housing end is formed by means of an outlet-side flow divider having eight, mutually spaced flow openings as well as a tube arrangement with eight bent measuring tubes for the conveying flowing medium, which, forming flow paths connected for parallel flow, are connected to the flow dividers, wherein each of the eight measuring tubes in each case opens with an inlet-side measuring tube end into one of the flow openings of the flow divider, and in each case opens with an outlet-side measuring tube end into one of the flow openings of the flow divider. An electro-mechanical exciter mechanism of the measuring transducer serves for producing and/or maintaining mechanical oscillations of the measuring tubes.
摘要:
A measuring transducer comprises a measuring tube vibrating at least at times during operation, having a wall thickness (s) and at least one oscillation sensor, especially an electrodynamic oscillation sensor, for producing at least one primary signal of the measuring transducer representing vibrations of the measuring tube. In the measuring transducer at least one securement element, especially a metal securement element, fixedly encircling the measuring tube essentially along a circumferential line thereof and having a total width (B), for holding a component of the oscillation sensor, especially a magnet coil or a permanent magnet, on the measuring tube is provided. The securement element has an essentially rectangular outer perimeter with a projection protruding out therefrom by a height (h) and serving for holding the component of the oscillation sensor. The projection has a width (e), which is smaller than the total width (B) of the securement element.
摘要:
A measuring system comprises: a measuring transducer, through which medium flows and which produces oscillatory signals dependent on medium viscosity and/or a Reynolds number of the flowing medium; and transmitter electronics for driving the measuring transducer and for evaluating oscillatory signals. The measuring transducer includes: four, mutually spaced, flow openings; an outlet-side flow divider with four, mutually spaced, flow openings; four, mutually parallel, straight, measuring tubes for conveying flowing medium, connected to the flow dividers electromechanical exciter mechanism. The transmitter electronics feeds, by means of an electrical driver signal supplied to the exciter mechanism, electrical excitation power into the exciter mechanism, while the exciter mechanism converts electrical excitation power at least partially into torsional oscillations of the first measuring tube, opposite-equal torsional oscillations of the second measuring tube, as well as into torsional oscillations of the third measuring tube, opposite-equal torsional oscillations of the fourth measuring tube.
摘要:
A measuring transducer comprises: a transducer housing, an inlet-side, flow divider having exactly four spaced flow openings and an outlet-side, housing end by means of an outlet-side, flow divider having exactly four spaced flow openings; as well as exactly four, straight, measuring tubes connected to the flow dividers. Each of the four measuring tubes opens with an inlet-side, measuring tube end into one the flow openings and with an outlet-side, measuring tube end into one the flow openings of the outlet-side, flow divider. Additionally, the measuring transducer includes an electromechanical exciter mechanism, wherein the exciter mechanism is embodied in such a manner, that, therewith, the measuring tubes are excitable pairwise to execute opposite phase bending oscillations in, in each case, a shared imaginary plane of oscillation. The measuring transducer is suitable, especially, for measuring a density and/or a mass flow rate of a medium flowing in a pipeline, at least at times, with a mass flow rate of more than 2200 t/h.
摘要:
The measuring system comprises: a measuring transducer, through which medium flows during operation and which serves for producing oscillatory signals dependent on a viscosity of the flowing medium and/or a Reynolds number of the flowing medium; transmitter electronics for driven the measuring transducer and for evaluating oscillatory signals delivered by the measuring transducer. The measuring transducer includes: an inlet-side flow divider; an outlet-side flow divider; at least two, mutually parallel, straight, measuring tubes, connected to the flow dividers; as well as an electromechanical exciter mechanism for exciting and maintaining mechanical oscillations of the at least two measuring tubes. Each of the at least two measuring tubes opens with an inlet-side measuring tube end into a flow opening and with an outlet-side. The transmitter electronics feeds, by means of an electrical driver signal supplied to the exciter mechanism, electrical excitation power into the exciter mechanism, while the exciter mechanism converts electrical excitation power at least partially into opposite-equal torsional oscillations of the at least two measuring tubes.
摘要:
A measuring transducer has a transducer housing, has a transducer housing, having a housing end is formed by means of, a flow divider having exactly four flow openings and an outlet-side, housing end is formed by means of, a flow divider having exactly four flow openings, and four straight, measuring tubes connected to the flow dividers. Each measuring tube opens into one of the flow openings and with an outlet-side, measuring tube end into one of the flow openings of the outlet-side, flow divider. Also included is an electromechanical exciter mechanism embodied, so that the measuring tubes are excitable pairwise to execute opposite phase bending oscillations in, in each case, a shared imaginary plane of oscillation (XZ1, XZ2).
摘要:
A measuring transducer includes: a transducer housing with an inlet-side flow divider having exactly four flow openings and an outlet-side flow divider having exactly four flow openings; as well as exactly four, straight, measuring tubes connected to the flow dividers. Each of the four measuring tubes opens into one the flow openings of the inlet-side flow divider and into one the flow openings of the outlet-side flow divide. Additionally, the measuring transducer includes an electromechanical exciter mechanism for producing and/or maintaining mechanical oscillations of the measuring tubes such that the measuring tubes are excitable pairwise to execute opposite phase bending oscillations in a shared imaginary plane of oscillation.
摘要:
The measuring transducer serves for registering at least one physical, measured variable of a flowable medium guided in a pipeline and/or for producing Coriolis forces serving for registering a mass flow rate of a flowable medium guided in a pipeline. For such purpose, the measuring transducer comprises: A transducer housing (71), of which an inlet-side, housing end is formed by means of an inlet-side, flow divider (201) having exactly four flow openings (201A, 201B, 201C, 201D) spaced, in each case, from one another and an outlet-side, housing end is formed by means of an outlet-side, flow divider (202) having exactly four flow openings (202A, 202B, 202C, 202D) spaced, in each case, from one another; as well as exactly four, straight, measuring tubes (181, 182, 183, 184) connected to the flow dividers (201, 202) for guiding flowing medium along flow paths connected in parallel. Each of the four measuring tubes opens with an inlet-side, measuring tube end into one the flow openings (201A, 201B, 201C, 201D) of the inlet-side, flow divider (201) and with an outlet-side, measuring tube end into one the flow openings (202A, 202B, 202C, 202D) of the outlet-side, flow divider (202). Additionally, the measuring transducer includes an electromechanical exciter mechanism (5) for producing and/or maintaining mechanical oscillations of the four measuring tubes (181, 182, 183, 184), wherein the exciter mechanism is embodied in such a manner, that, therewith, the measuring tubes are excitable pairwise to execute opposite phase bending oscillations in, in each case, a shared imaginary plane of oscillation (XZ1, XZ2). The measuring transducer of the invention is suitable, especially, for measuring a density and/or a mass flow rate of a medium flowing in a pipeline, at least at times, with a mass flow rate of more than 2200 t/h.
摘要:
A measuring transducer serves for registering at least one physical, measured variable of a flowable medium guided in a pipeline and/or for producing Coriolis forces serving for registering a mass flow rate of a flowable medium guided in a pipeline. The measuring transducer comprises: a transducer housing; four, straight, measuring tubes connected to flow dividers for guiding flowing medium along flow paths. Each of the four measuring tubes opens with an inlet-side, measuring tube end into one the flow openings of an inlet-side, flow divider and with an outlet-side, measuring tube end into one of the flow openings. An electromechanical exciter mechanism for producing and/or maintaining mechanical oscillations of the four measuring tubes. The exciter mechanism is embodied in such a manner, that, the measuring tubes are excitable pairwise to execute opposite phase bending oscillations in, in each case, a shared imaginary plane of oscillation. The measuring transducer is suitable, especially, for measuring a density and/or a mass flow rate of a medium flowing in a pipeline, at least at times, with a mass flow rate of more than 2200 t/h.