摘要:
This mass flow/density sensor (10), which can be installed in a pipe and through which a fluid to be measured flows during operation, is to be balanced over a wide density range, so that accurate measurements are possible. A single straight measuring tube (13) having a longitudinal axis (131) extends between its inlet end (11) and the outlet end (12) and is fixed to a support, e.g., a cylindrical tube (14, 14'). The support has a longitudinal centroidal line (141) which is parallel to, but does not coincide with, the longitudinal axis (131) of the measuring tube. A cantilever (15) is fixed to the measuring tube (13) midway between the inlet and outlet ends (11, 12) and in operation causes the measuring tube to vibrate either in a first fundamental flexural mode or in a second fundamental flexural mode having a higher frequency than this first mode. An excitation arrangement (16) disposed midway between the end pieces excites the measuring tube (13) in the second mode. Sensors (17, 18) for the motions of the measuring tube on the inlet and outlet side are positioned between the middle of the tube and the inlet and outlet ends, respectively. The support may be provided with a counterbalance. Because of the torsional vibrations exerted by the cantilever on the measuring tube, the sensor is also well suited for measuring the viscosity of the fluid.
摘要:
A Coriolis mass flow/density sensor which can be installed in a pipe and through which a fluid to be measured flows during operation is balanced over a wide density range so that accurate measurements are possible. The Coriolis mass flow/density sensor includes a measuring tube, an excitation arrangement for exciting the measuring tube to vibrate in a second fundamental flexural mode of vibration; and a counterbalance member attached to the measuring tube which counterbalances the vibration of the measuring tube. A cantilever can be attached to the measuring tube midway between the inlet end and the outlet end of the measuring tube. First and second sensors sense the measuring tube vibration on the inlet and outlet sides of the measuring tube, respectively.
摘要:
A Coriolis mass flow/density sensor is provided. The sensor includes a measuring tube for conducting a fluid. The measuring tube is fixed in a support and may be coupled to a pipe via an inlet tube and an outlet tube. The sensor further includes an excitation arrangement for vibrating the measuring tube in a predetermined vibration mode, a sensor arrangement for detecting vibrations of the measuring tube, and a brake assembly coupled to the measuring tube and the support. The brake assembly is operable to suppress at least one mode of vibrations other than the predetermined vibration mode.
摘要:
The invention relates to an apparatus for measuring volume- or mass-flow of a medium (11) flowing through a measuring tube (2) in the direction of the measuring tube axis (3), and includes: A magnet system (6, 7; 17), which produces a magnetic field (B) passing through the measuring tube (2) essentially transversely to the measuring tube axis (3); at least one measuring electrode (4; 5), which contacts the medium (11) in a defined surface region; and a control/evaluation unit (8), which provides information concerning volume- or mass flow of the medium (11) in the measuring tube (2) on the basis of a measurement voltage induced in the at least one measuring electrode (4, 5); wherein at least the medium-contacting surface region of the at least one measuring electrode (4, 5) is manufactured of a chemically inert and electrochemically and mechanically resistant material.
摘要:
An apparatus for measuring volume- or mass-flow of a medium flowing through a measuring tube in the direction of the measuring tube axis, and includes: a magnet system, which produces a magnetic field passing through the measuring tube essentially transversely to the measuring tube axis; at least one measuring electrode, which contacts the medium in a defined surface region; and a control/evaluation unit, which provides information concerning volume- or mass flow of the medium in the measuring tube on the basis of a measurement voltage induced in the at least one measuring electrode. At least the medium-contacting surface region of the at least one measuring electrode is manufactured of a chemically inert and electrochemically and mechanically resistant material.