摘要:
A superconducting high-field magnet coil system comprising several radially nested main coil sections (1, 2, 3, 4, 5) which are connected to each other in series in such a fashion that currents of the same direction flow through them during operation, wherein a first main coil section (EHS) is disposed radially further inward than a second main coil section (ZHS) and at least one intermediate main coil section (ZW) is disposed radially between the first and the second main coil section (EHS, ZHS), and with a superconducting switch (11) via which all main coil sections (1, 2, 3, 4, 5) can be superconductingly short-circuited in series, is characterized in that the first main coil section (EHS) and the second main coil section (ZHS) are directly successively series-connected and the first main coil section (EHS) and the second main coil section (ZHS) are bridged by a common quench protection element, which does not bridge the at least one intermediate main coil section (ZW). The magnet coil system realizes quench protection for selectively preventing excess currents in magnet coil areas in which the excessive mechanical force load associated with an excess current would damage the superconductor.
摘要:
A superconducting high-field magnet coil system comprising several radially nested main coil sections (1, 2, 3, 4, 5) which are connected to each other in series in such a fashion that currents of the same direction flow through them during operation, wherein a first main coil section (EHS) is disposed radially further inward than a second main coil section (ZHS) and at least one intermediate main coil section (ZW) is disposed radially between the first and the second main coil section (EHS, ZHS), and with a superconducting switch (11) via which all main coil sections (1, 2, 3, 4, 5) can be superconductingly short-circuited in series, is characterized in that the first main coil section (EHS) and the second main coil section (ZHS) are directly successively series-connected and the first main coil section (EHS) and the second main coil section (ZHS) are bridged by a common quench protection element, which does not bridge the at least one intermediate main coil section (ZW). The magnet coil system realizes quench protection for selectively preventing excess currents in magnet coil areas in which the excessive mechanical force load associated with an excess current would damage the superconductor.
摘要:
An NMR magnet coil system, comprising superconducting conductor structures, with an inductance L0 for generating a homogeneous magnetic field B0 through which an operating current I0 flows in the persistent mode, and wherein further superconducting switches (S1, S2, . . . Sn−1) are each provided between two points (P1, Q1), (P2, Q2), . . . , (Pn−1, Qn−1) of the winding of the magnet coil system which, during operation, separately superconductingly short-circuit one or more disjoint partial regions (1, 2, . . . , n−1) with the inductances L1, L2, . . . , Ln−1 to generate magnetic field contributions B1, B2, . . . , Bn−1 to the homogeneous magnetic field B0, is characterized in that the following is valid: α = &LeftBracketingBar; L 0 ∑ j = 1 n ( L - 1 ) jn B j B 0 &RightBracketingBar; ≤ 0.8 wherein Bn is the magnetic field contribution to the homogeneous magnetic field B0 of the residual region (n) of the magnet coil system, reduced by the separately superconductingly short-circuited partial regions (1, 2, . . . , n−1) and having the inductance Ln, wherein (L−1)jn is the entry of the jth line and nth column of the inverse of the entire inductance matrix of the magnet coil system and wherein L0 is the total magnetic inductance (sum of all entries of the inductance matrix). This permits substantial compensation of magnetic field drift caused by a residual resistance in a winding of the superconducting conductor structures of the coil system with little technical effort and without using a separate drift compensation coil, even in existing coil systems.
摘要:
A cryostat configuration has a magnet coil system (2) disposed in a helium tank (1), and a horizontal room temperature bore (3) which provides access to a volume under investigation in the center of the magnet coil system (2). The helium tank (1) contains undercooled liquid helium at a temperature of less than 3.5 K, in particular of approximately 2 K, and the cryostat configuration has at least one vertical tower structure (4) on its upper side for filling in and evaporating helium. The tower structure (4) contains a container (5) with liquid helium of 4.2 K which is separated from the helium tank (1) by a thermal barrier (7), and the helium tank (1) contains an undercooling unit (9). This yields a compact cryostat configuration which achieves continuous, stable long-term operation with an undercooled high-field magnet coil.
摘要:
A cryostat (1) with a first helium tank (4) which contains helium at an operating temperature T1 3 K, wherein a cooling means (6) is provided in the first helium tank (4) which generates an operating temperature T1
摘要:
A superconducting magnet coil configuration comprising at least one section of a superconducting strip conductor, which is continuously wound in a cylindrical winding chamber (1) between two end flanges (2, 3) in several solenoid-like layers is characterized in that the section comprises an axial region of reduced current density (=notch region (12)), and the winding chamber (1) in the notch region (12) contains a first separating body (4) with a truncated conical envelope (5) which axially divides the winding chamber (1) into two partial chambers (6, 7), the superconducting strip conductor being guided over the truncated conical envelope (5) of the first separating body (4) from one partial chamber (6) into the other partial chamber (7) via a single-layer transfer winding (9), and a second separating body (10) is provided which supplements the first separating body (4) in the notch region (12) in a radial outer direction to form a circular cylinder, wherein the single-layer transfer winding (9) is disposed between the separating bodies (4, 10). The inventive magnet coil configuration thereby realizes an HTS coil with a notch region for correcting inhomogeneities, wherein bending of the strip conductor through a small radius of curvature is not necessary.
摘要翻译:超导磁体线圈构造包括至少一部分超导条形导体,其连续地卷绕在几个螺线管状层中的两个端部凸缘(2,3)之间的圆柱形卷绕腔(1)中,其特征在于,该部分包括 减小电流密度的轴向区域(=切口区域(12))和切口区域(12)中的卷绕室(1)包含具有截头圆锥形包络线(5)的第一分离体(4) 卷绕室(1)分成两个部分室(6,7),超导条状导体被引导到第一分离体(4)的截头圆锥形包络(5)从一个部分室(6)进入另一部分室 (9),并且设置有第二分离体(10),其在径向外侧方向上在凹口区域(12)中补充第一分离体(4)以形成圆柱体, w 在这里,单层转移绕组(9)设置在分离体(4,10)之间。 本发明的磁体线圈结构由此实现具有用于校正不均匀性的切口区域的HTS线圈,其中条形导体通过小的曲率半径的弯曲是不必要的。
摘要:
A cryostat configuration (10), with at least one cryostat (11), which has at least one first chamber (1) with supercooled liquid helium having a temperature of less than 4 K and at least one further chamber (2), which contains liquid helium having a temperature of approximately 4.2 K, a Joule-Thomson valve (3) being disposed in the first chamber, wherein the first chamber is separated from the further chamber by a thermally insulating barrier (4), wherein helium from the first or the further chamber expands through the Joule-Thomson valve into a pump-off pipe (13), which is in thermal contact with the helium of the first chamber and supercools the latter, and wherein the pump-off pipe is directly or indirectly in thermal contact with the further chamber during its further progression and is then connected to the inlet of a pump (14), is characterized in that the outlet of the pump and/or an outlet for evaporating helium of at least one of the cryostats is fluidically connected to the further chamber through a cryogen pipe (15), and that the cryogen pipe has a branch-off device (16), which returns a partial current of the helium located in the cryogen pipe into the further chamber. In this way, the helium consumption and therefore the operating costs are reduced while the pressure in the first chamber remains constant.
摘要:
In a driver restraining system in a motor vehicle having an airbag which is integrated into a steering device, in the event of a crash, the positioning of the steering device and a triggering decision about the unfolding of the airbag and an unfolding characteristic of the airbag are determined by a control unit whose input signals include a signal of a crash detection sensor system and a signal of a passenger compartment sensor system which has at least one seat position detection means and a sensor system for sensing morphological data of the driver. Furthermore, in the event of a crash, the control unit additionally actuates a motor-operated seat adjustment device of the driver's seat in an adapted fashion.
摘要:
A superconducting magnet coil configuration comprising at least one section of a superconducting strip conductor, which is continuously wound in a cylindrical winding chamber (1) between two end flanges (2, 3) in several solenoid-like layers is characterized in that the section comprises an axial region of reduced current density (=notch region (10)), and the winding layers (6, 9) have hollow cylindrical blind regions (4a, 4b, 4c) which are filled with filler and which have different axial lengths, and radially sequential blind regions (4a, 4b, 4c) each alternately abut one of the two end flanges (2, 3) and are each radially separated from each other by at least one continuous winding layer (7), wherein the axial overlapping region of the blind regions (4a, 4b, 4c) forms the notch region (10). The inventive device thereby realizes a magnet coil configuration comprising a strip conductor which has a notch region for correcting inhomogeneities, wherein the mechanical load on the strip conductor is minimized.
摘要:
In a method and an apparatus for the precooling of a helium tank of a cryostat, in particular an optical cryostat with optical components in the helium tank, or an NMR cryostat, or a medical NMR cryostat for magnet resonance imaging, which accepts a superconducting magnet coil, a simple and cost effective precooling is achieved in that liquid nitrogen is directed out of a storage container under small overpressure via a conduit through an opening in the helium tank of a cryostat into a heat exchanger arranged in the helium tank and therefrom, by way of an opening, out of the cryostat and, finally, into a collecting container, in particular, into a nitrogen tank surrounding the helium tank.