Abstract:
A magnetic pole for magnetic levitation vehicles is described which pole comprises a core (1) and a winding (16) applied on it in form of a disc which is formed by a conductor strip (17) wound in several layers (10a) . . . 10k) around said core (1). According to the present invention, the conductor strip (17) is properly tailor-cut at its longitudinal rims (17a, 17b) so that its width increases from said core (1) towards the outside until it reaches a maximum value (b2) (FIG. 3).
Abstract:
A magnetic pole for magnetic levitation vehicles is described which pole comprises a core (1) and a winding (16) applied on it in form of a disc which is formed by a conductor strip (17) wound in several layers (10a) . . . 10k) around said core (1). According to the present invention, the conductor strip (17) is properly tailor-cut at its longitudinal rims (17a, 17b) so that its width increases from said core (1) towards the outside until it reaches a maximum value (b2).
Abstract:
The invention relates to a magnetic levitation train, comprising a track system formed of track system carriers (2) and a vehicle (1) having at least one first magnetic system (7), which together with stator packs (4) mounted on the track system forms a long stator linear motor and during operation is disposed at a distance from the stator packs (4) by a small carrying gap. According to the invention, first sound damping bodies (14) are disposed on the carriers (2) in a space which is located between the carrier (2) and the magnetic system (7) and the carrying gap when a vehicle (1) passes. In addition, second sound damping bodies (15) are provided on the vehicle (1) on the side of the magnetic system (7) facing away from the carrier (2).
Abstract:
A guideway carrier (11) and a magnetic levitation railway being produced therewith are described. The guideway carrier (11) has a gliding surface (14) for the gliding skids of the magnetic levitation railway. The gliding surface (14) is provided with a coating, which is applied by the use of a low-friction and low-wear ceramic material being adapted (matched) to the gliding skid material (FIG. 2).
Abstract:
The invention relates to a magnetic bearing and to a method for operation thereof. The magnetic bearing contains a ferromagnetic, movably mounted bearing element (1) and at least two magnetic devices (3o, 3u) arranged on opposing sides of the bearing element (1) and equipped with windings (6), wherein during operation of the magnetic bearing, electric currents are conducted through the windings (6) and these currents are regulated such that in an equilibrium state between the bearing element (1) and the two magnetic devices (3o, 3u), bearing gaps (10o, 10u) of predetermined size (So, Su) form. According to the invention, the temperatures produced in the magnetic devices (3o, 3u) during operation are measured and the regulation of the currents takes place such that in the equilibrium state, regardless of the load situation, the same temperatures appear in the magnetic devices (3o, 3u) or in the windings (6) thereof (FIG. 1).
Abstract:
A guideway carrier (11) and a magnetic levitation railway being produced therewith are described. The guideway carrier (11) has a gliding surface (14) for the gliding skids of the magnetic levitation railway. The gliding surface (14) is provided with a coating, which is applied by the use of a low-friction and low-wear ceramic material being adapted (matched) to the gliding skid material (FIG. 2).
Abstract:
The invention relates to a carrier (11) and a magnetic levitation railway provided with said carrier. The inventive carrier (11) comprises a sliding surface (14) and the sliding skates of a vehicle travelling along said magnetic levitation railway. According to said invention, the sliding surface (14) is provided with a coating (15, 16, 17) which comprises at least on the external area thereof an additional material which is compatible with the material for skates and reduces friction and ware.
Abstract:
The invention relates to a magnetic bearing and to a method for operation thereof. The magnetic bearing contains a ferromagnetic, movably mounted bearing element (1) and at least two magnetic devices (3o, 3u) arranged on opposing sides of the bearing element (1) and equipped with windings (6), wherein during operation of the magnetic bearing, electric currents are conducted through the windings (6) and these currents are regulated such that in an equilibrium state between the bearing element (1) and the two magnetic devices (3o, 3u), bearing gaps (10o, 10u) of predetermined size (So, Su) form. According to the invention, the temperatures produced in the magnetic devices (3o, 3u) during operation are measured and the regulation of the currents takes place such that in the equilibrium state, regardless of the load situation, the same temperatures appear in the magnetic devices (3o, 3u) or in the windings (6) thereof (FIG. 1).
Abstract:
The invention relates to a maglev railway comprising a support and drive system of the long stator-linear motor type, magnetic support poles that are situated in the vehicle being additionally provided with linear generator windings (10) that generate electric energy in the vehicle. The aim of the invention is to prevent unwanted, periodic vibrations (ripples) from being generated at low speeds. To achieve this, according to the invention, the teeth (5) and grooves (6) of the long stator (3) are arranged in high-speed sections (2a) parallel to the cores and the linear generator windings (10) of the support magnets provided in said cores and in low-speed sections (2b) obliquely to said cores (7) and linear generator windings.
Abstract:
The invention relates to a maglev railway comprising a support and drive system of the long stator-linear motor type, magnetic support poles that are situated in the vehicle being additionally provided with linear generator windings (10) that generate electric energy in the vehicle. The aim of the invention is to prevent unwanted, periodic vibrations (ripples) from being generated at low speeds. To achieve this, according to the invention, the teeth (5) and grooves (6) of the long stator (3) are arranged in high-speed sections (2a) parallel to the cores and the linear generator windings (10) of the support magnets provided in said cores and in low-speed sections (2b) obliquely to said cores (7) and linear generator windings.