摘要:
The invention relates to a device for melting or refining glass or glass ceramics. According to the invention, a device of this type is provided with the following characteristics: a plurality of tubes which are U-shaped and arrange side by side so that they form a cage like skull channel that is open on top, and a high frequency oscillation circuit which comprises an induction coil. The tubes can be connected to a cooling medium. The induction coil wraps around the channel in such a manner that winding sections extend along the lateral walls of the channel.
摘要:
The invention relates to a skull pot for melting or refining glass or glass ceramics, comprising a pot wall (1), a pot base, and an induction coil (3) which surrounds said pot wall and through which high-frequency energy can be coupled into the contents of the pot. The pot wall is made up of a ring of metal pipes (1.1) which can be connected to a cooling medium, slot-type intermediate chambers being provided between adjacent metal pipes. The pot base has a run-off for the melt. The metal pipes (1.1) that form the pot wall (1) arm short-circuited with each other above the base in order to increase the degree of efficiency of the skull pot and especially, in order to even out the temperature profile of the melt throughout the depth of the melt.
摘要:
The invention relates to a process for the production of a glass melt. For the avoidance of the oxygen reboil the process is equipped with the following process stages or steps: a melting stage a refining stage a homogenizing and conditioning stage; in which before the homogenizing and conditioning stage the melt is heated to a temperature of over 1700° C.; in which polyvalent ions are present in the melt in a proportion of at least 0.5% by wt.
摘要:
A method for melting inorganic materials, preferably glasses and glass-ceramics, in a melting unit with cooled walls is provided. The method includes selecting the temperature of at least one region of the melt is selected in such a way as to be in a range from Teff−20% to Teff+20%, where the temperature Teff is given by the temperature at which the energy consumption per unit weight of the material to be melted is at a minimum, with the throughput having been selected in such a way as to be suitably adapted to the required residence time.
摘要:
According to the invention, the skull pot is provided with the following characteristics: a pot wall (1), a bottom (3) and an induction coil (9) which surrounds the pot wall (1) and by means of which high-frequency energy can be coupled into the contents of the pot. The pot wall (1) is made of a ring of metal pipes (1.1) which can be connected to a cooling medium. Slits are embodied between adjacent metal pipes (1.1). The metal pipes (1.1) are bent at a right angle at the upper ends thereof in such a way that said pipes extend towards the outside, when the pot wall (1) is viewed from above, and form a collar (2). The collar (2) is surrounded by an additional wall (upper wall 4). The upper edge of said wall is situated on a higher level than the collar (2) in such a way that the melt covers the collar (2) during operation.
摘要:
A device and method for the plaining of glasses or glass-ceramics. The device is provided with a melting vat, at least two plaining containers serially connected after the outlet of the melting vat, and at least one of the plaining containers is built in accordance with the skull principle from a plurality of metal tubes comprising a cooling agent connection and a high-frequency device for inductively coupling high-frequency energy into the contents of the plaining container.
摘要:
The invention envisions a method for improving the thermal shock resistance of glass objects. For this a glass object is heated starting from a surface temperature under the softening point (42) on the surface of a first side (3) until the viscosity reaches or goes below a value of 10(7.65±2) poise.
摘要:
A lithium-aluminosilicate glass or a corresponding glass ceramic that has a content of 0-0.4SnO2, 1.3-2.7% by weight of ΣSnO2+TiO2, 1.3-2.5% by weight of ZrO2, 3.65-4.3% by weight of ΣZrO2+0.87 (TiO2+SnO2), ≦0.04% by weight of Fe2O3, 50-4000 ppm of Nd2O3 and 0-50 ppm of CoO is described. The glass or the glass ceramic is color-neutral, has a turbidity of less than 1% HAZE and a high light transmission. The glazing time for conversion of the glass into glass ceramic is especially short with less than 2.5 hours.
摘要:
A colorless transparent colloid-former-containing glass that is convertible into a colorless transparent glass ceramic or a metal colloid-colored glass ceramic via respective heat treatments contains a combination of one or more metal colloid formers and one or more redox partners. The metal colloid formers are preferably oxides containing Au, Ag, As, Bi, Nb, Cu, Fe, Pd, Pt, Sb and/or Sn. The redox partners are preferably oxides containing As, Ce, Fe, Mn, Sb, Sn and/or W, with the proviso that the redox partner must be different from the metal colloid former. The glass advantageously contains from 0.97 to 1.9 wt. % SnO2, 0.93 to 3.0 wt. % As2O3, or 1.59 to 6.0 wt. % of Sb2O3 as redox partner.
摘要:
A transparent, colorless lithium-aluminosilicate glass ceramic plate with high-quartz mixed crystals as the prevailing crystal phase, which is provided on one side with an opaque, colored, temperature-stable coating over the entire surface or over the entire surface to a large extent, is described, which has a content of Nd2O3 of 40 to 4000 ppm, a Yellowness Index of less than 10% with a 4 mm glass (ceramic) layer thickness, and a variegation of colors of the glass or the glass ceramic in the CIELAB color system of C* of less than 5. The glass ceramic plate preferably has a composition (in % by weight based on oxide) of: Li2O 3.0-4.5, Na2O 0-1.5, K2O 0-1.5, ΣNa2O+K2O 0.2-2.0, MgO 0-2.0, CaO 0-1.5, SrO 0-1.5, BaO 0-2.5, ZnO 0-2.5, B2O3 0-1.0, Al2O3 19-25, SiO2 55-69, TiO2 1-3, ZrO2 1-2.5, SnO2 0-0.4, ΣSnO2+TiO2