摘要:
The present invention provides a dye-sensitized solar cell which enhances an area of a photo electrode by arranging metal wires on a surface of a transparent substrate or a transparent conductive layer without degrading a transparency of the solar cell, allowing the metal wires to act as a collector electrode exclusively or together with a metal electrode.
摘要:
A semiconductor oxide ink composition, a method of manufacturing the composition, and a method of manufacturing a photoelectric conversion element are provided. The semiconductor oxide ink composition for inkjet printing comprises a semiconductor oxide and a solvent, wherein the semiconductor oxide comprises 0.1 to 20 parts by weight relative to 100 parts by weight of the total composition.
摘要:
Disclosed is a dye-sensitized solar cell module and a method of manufacturing the same. More specifically a counter electrode has connection parts formed within the side surfaces of the transparent conductive substrates. Edges of the working electrode and the counter electrode are bonded with each other by a sealant along the outer peripheral except for at one or more portions of the edges to form an electrolyte injection port. An electrolyte is then injected through the electrolyte injection hole into a space between the working electrode and the counter electrode. The electrolyte injection hole is then sealed by a sealant.
摘要:
The present invention provides a dye-sensitized solar cell which enhances an area of a photo electrode by arranging metal wires on a surface of a transparent substrate or a transparent conductive layer without degrading a transparency of the solar cell, allowing the metal wires to act as a collector electrode exclusively or together with a metal electrode.
摘要:
Disclosed are a dye-sensitized solar cell module and a method of manufacturing the same. The dye-sensitized solar cell module includes a working electrode formed by stacking a collector and a photo-electrode to which a dye is adsorbed on a transparent conductive substrate; a counter electrode formed by stacking a collector and a catalytic electrode on a transparent conductive substrate; and an electrolyte filled in a space between the working electrode and the counter electrode sealed by a sealant. A glass substrate for the working electrode of glass substrates forming the transparent conductive substrates for the electrodes is a thin glass plate substrate thinner than the glass substrate for the working electrode.
摘要:
Disclosed is a porous film type solid electrolyte, a dye-sensitized solar cell using the same, a method for manufacturing the same. More particularly, a porous film type solid electrolyte for improving long-term durability of a dye-sensitized solar cell is disclosed. The disclosure provides a porous film type solid electrolyte prepared by impregnating an electrolyte material into a porous polymer film formed from a film composition comprising 0.1-90 wt % of a UV-curable polymer material, 0.1-10 wt % of a nonionic emulsifier and 0.01-0.1 wt % of a photocrosslinking initiator.
摘要:
Disclosed are a dye-sensitized solar cell module and a method of manufacturing the same. The dye-sensitized solar cell module includes a working electrode formed by stacking a collector and a photo-electrode to which a dye is adsorbed on a transparent conductive substrate; a counter electrode formed by stacking a collector and a catalytic electrode on a transparent conductive substrate; and an electrolyte filled in a space between the working electrode and the counter electrode sealed by a sealant. A glass substrate for the working electrode of glass substrates forming the transparent conductive substrates for the electrodes is a thin glass plate substrate thinner than the glass substrate for the working electrode.
摘要:
Featured are a non-planar curved dye-sensitized solar cell and a method of manufacturing such a solar cell. In particular aspects, such methods include preparing two curved substrates, forming a first curved conductive substrate for a working electrode and a second curved conductive substrate for a counter electrode, coating a metal electrode and a protection film on each of the first and second curved conductive substrates, forming the working electrode by coating a semiconductor oxide electrode film on a concave surface of the first curved conductive substrate and by adsorbing a dye in the semiconductor oxide electrode film, forming the counter electrode by coating a catalytic electrode on a convex surface of the second curved conductive substrate, and joining the working electrode with the counter electrode and injecting an electrolyte in between the working electrode and the counter electrode.
摘要:
Disclosed is a dye-sensitized solar cell. The dye-sensitized solar cell includes a working electrode and a counter electrode configured to join the working electrode. The working electrode includes a photo electrode having a plurality of photo electrode cells coated on a transparent conductive substrate and arranged in linear rows and a collector having a plurality of collector cells coated on the transparent conductive substrate and arranged along perimeters of the photo electrode and between the photo electrode cells and a collector bottom portion integrally interconnecting the collector cells. The collector cells have a same length or the collector cells arranged along the perimeters have a different length from the collector cells arranged between the photo electrode cells to increase an active area of the photo electrode.
摘要:
Disclosed is a dye-sensitized solar cell module and a method of manufacturing the same. More specifically a counter electrode has connection parts formed within the side surfaces of the transparent conductive substrates. Edges of the working electrode and the counter electrode are bonded with each other by a sealant along the outer peripheral except for at one or more portions of the edges to form an electrolyte injection port. An electrolyte is then injected through the electrolyte injection hole into a space between the working electrode and the counter electrode. The electrolyte injection hole is then sealed by a sealant.