摘要:
A method for recycling carbon dioxide from biomass gasification. The method includes: 1) employing carbon dioxide as a gasifying agent, allowing the carbon dioxide to gasify biomass to yield syngas; 2) cooling the syngas; 3) introduced cooled syngas to a cyclone separator and a gas scrubber for dust removal and purification; 4) allowing purified syngas in 3) to react with the vapor to modify a ratio of hydrogen to carbon monoxide of the syngas; 5) desulfurizing modified syngas to remove H2S and COS therein; 6) decarburizing desulfurized syngas to separate carbon dioxide therein; 7) introducing desulfurized and decarburized syngas to a synthesizing tower to yield oil products and exhaust gas including carbon dioxide; 8) decarburizing the exhaust gas including carbon dioxide and separating the carbon dioxide; and 9) introducing the carbon dioxide separated in 6) and 8) to 1) as the gasifying agent for gasification.
摘要:
A biomass gasification system. The system includes: a) a gasifier; b) a waste heat exchanger; c) a waste heat boiler; d) a cyclone separator; e) a gas scrubber; f) a shift reactor; g) a desulfurizing tower; h) a first decarburizing tower; i) a synthesizing tower; and j) a second decarburizing tower. In the system, the gasifier, the waste heat exchanger, the cyclone separator, the gas scrubber, the shift reactor, the desulfurizing tower, the first decarburizing tower, the synthesizing tower, and the second decarburizing tower are connected sequentially. In addition, CO2 outlets of the first decarburizing tower and the second decarburizing tower are both connected to a cold medium inlet of the waste heat exchanger; and a cold medium outlet of the waste heat exchanger is connected to a gasifying agent entrance of the gasifier.
摘要:
A method for purifying and cooling biomass syngas. The method includes: 1) cooling biomass syngas to 520-580° C., and recycling waste heat to yield a first steam; then subjecting the biomass syngas to cyclone dust removal treatment; and further cooling the biomass syngas to a temperature of ≤210° C., and recycling waste heat to yield a second steam; 2) removing a portion of heavy tar precipitating out of the biomass syngas during the second-stage indirect heat exchange; 3) carrying out dust removal and cooling using a scrub solution, to scrub off most of dust, tar droplets, and water soluble gases from the biomass syngas after the heat exchange and dust removing treatment; and 4) conducting deep removal of dust and tar with a wet gas stream, to sweep off remains of dust and tar fog in the scrubbed biomass syngas.
摘要:
A method for gasifying biomass using a gasifier, the gasifier including a furnace body and a fuel pretreatment system. The method includes 1) crushing and sieving a biomass fuel to yield particle size-qualified fuel particles, 2) exciting working gas to yield plasma, and spraying the plasma into the gasifier, 3) spraying the particle size-qualified fuel particles into the gasifier via nozzles, synchronously spraying an oxidizer via an oxygen/vapor inlet into the gasifier, and 4) monitoring the temperature and components of the syngas, regulating an oxygen flow rate, a vapor flow rate, and microwave power to maintain the process parameters within a preset range and to control a temperature of the syngas to be between 900 and 1200° C., collecting the syngas from the syngas outlet at the top of the furnace body, and discharging liquid slag from the slag outlet.
摘要:
A method for pressurized pyrolysis of biomass in a pressurized pyrolysis furnace, including: 1) crushing and screening biomass; collecting biomass having desired particle sizes; and delivering the biomass having desired particle sizes to a pulse-type feeding system; 2) transporting the biomass to a pyrolysis furnace via the pulse-type feeding system; synchronously initiating microwave and a plasma torch, the microwave producing a microwave field in the pyrolysis furnace, working gas of the plasma torch being ionized for the first time to produce plasma jet entering the pyrolysis furnace; and 3) allowing the syngas generated in 2) to continue moving upwards and introducing the syngas out from the top of the pyrolysis furnace; chilling the syngas; introducing the syngas to a cyclone separator to separate residues; and then cooling and purifying the syngas using a cooling device and a purifying device, respectively, to produce clean syngas.