Abstract:
A lift assembly for use during inflation of a balloon envelope is provided. The lift assembly includes a plate structure that has a set of cavities. Each cavity includes one or more openings passing through the plate. One or more pistons are coupled to the plate through at least one of the openings of each cavity in the set of cavities. Each piston has a hollow tube portion projecting lengthwise from the at least one opening, a flange attached to the hollow tube portion and a grabber portion in communication with the flange. The grabber portion includes a plurality of bearings for grabbing a stud attached to an apex of the balloon envelope. A handle portion is coupled to the plate. The handle is arranged to lift the balloon envelope when the bearings have grabbed a given stud.
Abstract:
A fixed housing that is configured to be coupled to a balloon envelope and an impeller housing disposed within the fixed housing, wherein the impeller housing and the fixed housing form a seal in a closed position, wherein the impeller housing is moveable into the balloon envelope relative to the fixed housing in an open position, and wherein the impeller housing defines an unobstructed airflow passageway between an internal chamber in a balloon envelope and the atmosphere in the open position.
Abstract:
Aspects of the disclosure relate to techniques for launching high-altitude balloons. In one aspect, a balloon launching system is provided. The balloon has a balloon envelope, a payload attached to the balloon envelope and a launching projection. The launching system includes a releasable restraint attached to the balloon between an apex and bottom of the balloon envelope. The releasable restraint is arranged to temporarily hold the balloon envelope. The launching system also includes a payload positioning assembly. The payload positioning assembly is configured to position the payload during launch of the balloon and includes a member configured to attach to the launching projection. When attached, the member is also configured to maintain the position of the payload relative to the balloon while the releasable restraint is temporarily holding the balloon envelope.
Abstract:
Aspects of the disclosure relate to techniques for launching high-altitude balloons. In one aspect, a balloon launching system is provided. The balloon has a balloon envelope, a payload attached to the balloon envelope and a launching projection. The launching system includes a releasable restraint attached to the balloon between an apex and bottom of the balloon envelope. The releasable restraint is arranged to temporarily hold the balloon envelope. The launching system also includes a payload positioning assembly. The payload positioning assembly is configured to position the payload during launch of the balloon and includes a member configured to attach to the launching projection. When attached, the member is also configured to maintain the position of the payload relative to the balloon while the releasable restraint is temporarily holding the balloon envelope.
Abstract:
A portable launch rig (PLR) may include a support structure including two side supports defining an interior space for lifting and filling a balloon envelope of a balloon. Wheels on each of the side supports enable the PLR to be moved in various directions in order to prepare the PLR for launching the balloon. The side supports are connected by a lateral support beam having a pair of cranes arranged thereon. Each crane has an arm arranged over the interior space that is connected to a spreader beam. The spreader beam includes a lift assembly configured to lift and inflate the balloon envelope within the interior space. The PLR includes a platform and perch for supporting and moving the balloon envelope. A door assembly of the PLR includes a plurality of hangar doors configured to block wind from a respective direction of each hangar door entering the interior space.
Abstract:
A lift assembly for use during inflation of a balloon envelope is provided. The lift assembly includes a plate structure that has a set of cavities. Each cavity includes one or more openings passing through the plate. One or more pistons are coupled to the plate through at least one of the openings of each cavity in the set of cavities. Each piston has a hollow tube portion projecting lengthwise from the at least one opening, a flange attached to the hollow tube portion and a grabber portion in communication with the flange. The grabber portion includes a plurality of bearings for grabbing a stud attached to an apex of the balloon envelope. A handle portion is coupled to the plate. The handle is arranged to lift the balloon envelope when the bearings have grabbed a given stud.
Abstract:
A lift assembly for use during inflation of a balloon envelope is provided. The lift assembly includes a plate structure that has a set of cavities. Each cavity includes one or more openings passing through the plate. One or more pistons are coupled to the plate through at least one of the openings of each cavity in the set of cavities. Each piston has a hollow tube portion projecting lengthwise from the at least one opening, a flange attached to the hollow tube portion and a grabber portion in communication with the flange. The grabber portion includes a plurality of bearings for grabbing a stud attached to an apex of the balloon envelope. A handle portion is coupled to the plate. The handle is arranged to lift the balloon envelope when the bearings have grabbed a given stud.