Abstract:
A transport item moves in a process direction to transport sheets of media. The transport item is positioned between an inkjet printhead and a receptacle. The inkjet printhead has nozzles. The transport item has openings arranged in a pattern, the pattern of the openings is consistent along all of the transport item, and the pattern of the openings in the transport item aligns at least one opening with each of the locations of the nozzles as the transport item moves in the process direction. The nozzles eject ink through the openings to the receptacle when the nozzles are aligned with the openings. When controlling the nozzles to eject ink through the openings to the receptacle, a controller can control the nozzles to simultaneously eject ink on a sheet of media while ejecting ink through the openings to the receptacle.
Abstract:
A system dynamically balances a rotating body. The system includes a support that holds the body as it rotates. At least one sensor generates signals indicative of a balance of the body as it rotates and a controller identifies a position on the body where material can be placed to balance the body. The controller operates at least one actuator to move a plurality of ejectors opposite the identified position where the controller operates at least one ejector in the plurality of ejectors to eject material onto the identified position. The system can operate iteratively until the body is balanced within a predetermined range.
Abstract:
An image forming apparatus includes a collection system for collecting vapor co-solvents that are a byproduct of liquid ink. In addition, the collection system collects dew condensation from the moist air that is generated by lamps that dry the ink on a substrate. The collection system can be located in an exhaust passage. A condenser is installed in parallel and in front of an exhaust fan in the exhaust passage. The exhaust fan directs a flow of air through the exhaust passage. The collection system also includes a removable waste bottle for collecting the dew condensation and the condensed co-solvents. The exhaust passage bifurcates into an exhaust duct that is located after the exhaust fan and which discharges dry air and a collection channel that is located in front of the exhaust fan and which carries liquid drip off to the removable waste bottle.
Abstract:
What is disclosed is an apparatus and method for inhibiting the formation of sediment in an ink tank of a MICR inkjet printer. In one embodiment, the present apparatus comprises an ink tank containing MICR ink and an electromagnet which resides in a chamber located on, near, or inside the ink tank. Activation of the electromagnet causes the particles to be attracted to the electromagnet's magnetic field such that the particles are lifted off a bottom of the tank to inhibit sediment formation thereon. The electromagnet can be activated in response to the MICR inkjet printer having been turned OFF. A sensor may further be employed to activate the electromagnet in response to one of: sediment in the ink tank having reached a pre-determined level; a flow-rate of liquid ink through the tank having fallen below a threshold level, sediment levels, or a pressure inside the tank.
Abstract:
A module is configured to selectively apply release agent to a web having a sequence of printed imaged formed thereon by a printer. The module includes a plurality of dispensers arranged in a cross-process direction across the imaged web. The module detects positions of areas in the printed images and determines whether the amount of ink in the areas meet or exceed a predetermined density threshold. If an area meets or exceeds the threshold, a controller operates a dispenser to apply release agent to the area on the web as the area passes the dispenser. The controller operates the dispensers with reference to image data of the surface of the web.
Abstract:
A transport item moves in a process direction to transport sheets of media. The transport item is positioned between an inkjet printhead and a receptacle. The inkjet printhead has nozzles. The transport item has openings arranged in a pattern, the pattern of the openings is consistent along all of the transport item, and the pattern of the openings in the transport item aligns at least one opening with each of the locations of the nozzles as the transport item moves in the process direction. The nozzles eject ink through the openings to the receptacle when the nozzles are aligned with the openings. When controlling the nozzles to eject ink through the openings to the receptacle, a controller can control the nozzles to simultaneously eject ink on a sheet of media while ejecting ink through the openings to the receptacle.
Abstract:
A media handling assembly contains a transport path for driving a document sheet downstream in a process direction. A first side edge extends lengthwise along the process direction. A registration guide edge extends lengthwise along the process direction and is situated opposite the first side edge. The media handling assembly includes at least one nozzle that is arranged proximate the first side edge. The at least one nozzle selectively discharges an airstream transverse the process direction towards the registration guide edge. The airstream drives the sheet against the registration edge guide for side registering and deskewing of the sheet.
Abstract:
A system dynamically balances a rotating body. The system includes a support that holds the body as it rotates. At least one sensor generates signals indicative of a balance of the body as it rotates and a controller identifies a position on the body where material can be placed to balance the body. The controller operates at least one actuator to move a plurality of ejectors opposite the identified position where the controller operates at least one ejector in the plurality of ejectors to eject material onto the identified position. The system can operate iteratively until the body is balanced within a predetermined range.
Abstract:
Layers of build and support material on an intermediate transfer surface are moved past a transfuse station and a platen moves relative to the intermediate transfer surface to contact the platen to one of the layers on the intermediate transfer surface. The intermediate transfer surface transfers a layer of the build material and the support material to the platen each time the platen contacts the layers on the intermediate transfer surface at the transfuse station to successively form a freestanding stack of the layers of build and support material on the platen. The build material has a higher melting temperature than the support material. A support material removal station heats the stack to a temperature above the melting temperature of the support material, but below the melting temperature of the build material, to melt the support material, but leave a 3-D structure made of only the build material.
Abstract:
A 3-D printer includes development stations that electrostatically transfer first and second materials to an intermediate transfer surface. The development stations can each include a photoreceptor supplying the materials to the intermediate transfer surface, and a boosted developer roll supplying the materials to the photoreceptor. The boosted developer roll comprises an outer roll rotating in a first rotational direction to move with movement of the photoreceptor, and a magnetic roll within the outer roll rotating in a second rotational direction opposite the first rotational direction. The magnetic roll comprises alternating permanent magnets. The intermediate transfer surface transfers a layer of the materials to a platen each time the platen contacts the intermediate transfer surface to successively form a freestanding stack of layers on the platen. A bonding station is positioned to apply light and/or heat to the freestanding stack to bond the layers to one another.