Abstract:
A method of making silver carboxylate includes forming a mixture of at least one carboxylic acid and at least one aromatic hydrocarbon solvent, and at room temperature, introducing silver oxide into the mixture to form the silver carboxylate in the aromatic hydrocarbon solvent. The mixture may be free of alkali bases and mineral acids, with no additional materials being introduced into the mixture when introducing the silver oxide.
Abstract:
A paste composition includes a branched metal carboxylate, a solvent in which the branched metal carboxylate is soluble and a gelling agent, wherein the gelling agent is a linear metal carboxylate. The paste solvent may be an aromatic hydrocarbon solvent. The paste compositing may be free of polymeric binder. The paste may be used in forming conductive features on a substrate, including by screen printing or offset printing.
Abstract:
A semiconductor composition includes a semiconducting polymer containing a diketopyrrolopyrrole (DKPP) moiety and carbon nanotubes dispersed into the semiconducting polymer. An electronic device contains a semiconductor layer including a semiconductor composition having a semiconducting polymer including a diketopyrrolopyrrole (DKPP) moiety and carbon nanotubes dispersed into the semiconducting polymer. A semiconductor composition contains a semiconducting polymer including a diketopyrrolopyrrole (DKPP) moiety, a solvent selected from the group consisting of tetrachloroethane, dichlorobenzene, chlorobenzene, chlorotoluene, and a mixture thereof, and a carbon nanotube.
Abstract:
A conductive ink includes a conductive material, a thermoplastic polyvinylbutyral terpolymer binder and a glycol ether solvent. The conductive material may be a conductive material is a conductive particulate having an average size of from about 0.5 to about 10 microns and as aspect ratio of at least about 3 to 1, such as a silver flake.