METHODS AND SYSTEMS FOR INTERPRETABLE USER BEHAVIOR PROFILING IN OFF-STREET PARKING
    1.
    发明申请
    METHODS AND SYSTEMS FOR INTERPRETABLE USER BEHAVIOR PROFILING IN OFF-STREET PARKING 审中-公开
    用于在离场停车场中解释用户行为分析的方法和系统

    公开(公告)号:US20160253681A1

    公开(公告)日:2016-09-01

    申请号:US14632207

    申请日:2015-02-26

    CPC classification number: G06Q30/0201 G06F17/30572 G06F17/30598

    Abstract: Methods and systems for interpretable user behavior profiling in off-street parking applications. To render user profiles easy to interpret by decision makers, the semi-automatic discovery and tagging of user profiles can be implemented. Transaction data from one or more (and geographically close) off-street parking installations can be implemented. An analysis of spatio-temporal behavioral patterns can be implemented based on representation of any parking episode by a set of heterogeneous features, the use of clustering methods for automatic pattern discovery, an assessment of obtained clusters, semi-automatic identification/tagging of space-temporal patterns, and a user-friendly interpretation of obtained patterns.

    Abstract translation: 在路边停车场应用中解释用户行为剖析的方法和系统。 为了使决策者易于理解用户简档,可以实现用户配置文件的半自动发现和标记。 可以实施来自一个或多个(和地理上接近)的路边停车设施的交易数据。 时空行为模式的分析可以基于一组异构特征表示任何停车情节,使用自动模式发现的聚类方法,获得的群集的评估,空间 - 时间行为模式的半自动识别/ 时间模式,以及对所获取模式的用户友好解释。

    METHOD AND SYSTEM FOR SIMULATING USERS IN THE CONTEXT OF A PARKING LOT BASED ON THE AUTOMATIC LEARNING OF A USER CHOICE DECISION FUNCTION FROM HISTORICAL DATA CONSIDERING MULTIPLE USER BEHAVIOR PROFILES
    2.
    发明申请
    METHOD AND SYSTEM FOR SIMULATING USERS IN THE CONTEXT OF A PARKING LOT BASED ON THE AUTOMATIC LEARNING OF A USER CHOICE DECISION FUNCTION FROM HISTORICAL DATA CONSIDERING MULTIPLE USER BEHAVIOR PROFILES 有权
    基于自动学习用户选择决策功能的停车场模拟用户的方法和系统,考虑到多个用户行为配置文件的历史数据

    公开(公告)号:US20160247326A1

    公开(公告)日:2016-08-25

    申请号:US14630227

    申请日:2015-02-24

    CPC classification number: G06N99/005 G06Q10/04 G06Q10/067 H04L67/306

    Abstract: Methods and systems for modeling user arrival and choice in the context of off-street parking solutions. A first component models the arrival and duration of stay of users as a function of time, taking into account different user profiles (or “clusters”), captured by a latent variable. A second component provides a ranking function (for each user cluster), wherein the input features describing the “choice” constitute status variables associated different car park(s), and the output constitutes a preferred car park and a pricing scheme. The system simulates different user behaviors by assuming some standard groups of users will behave similarly. Groups of users or user profiles are learned automatically. The profiles are then employed as a key element for automatically learning a decision function of parking users, and automatically learning one decision function per profile.

    Abstract translation: 用于在路边停车场解决方案的背景下建模用户到达和选择的方法和系统。 第一个组件将用户的到达时间和持续时间作为时间的函数来模拟,考虑到潜在变量捕获的不同用户简档(或“集群”)。 第二组件提供排序功能(对于每个用户群集),其中描述“选择”的输入特征构成与不同停车场相关联的状态变量,并且输出构成优选的停车场和定价方案。 假设某些标准用户组的行为类似,系统会模拟不同的用户行为。 用户组或用户配置文件将自动学习。 然后将轮廓用作用于自动学习停车用户的决定功能的关键要素,并且每个轮廓自动学习一个决定功能。

    Method and system for simulating users in the context of a parking lot based on the automatic learning of a user choice decision function from historical data considering multiple user behavior profiles
    4.
    发明授权
    Method and system for simulating users in the context of a parking lot based on the automatic learning of a user choice decision function from historical data considering multiple user behavior profiles 有权
    基于考虑到多个用户行为简档的历史数据的用户选择决定功能的自动学习来模拟停车场上下文中的用户的方法和系统

    公开(公告)号:US09576250B2

    公开(公告)日:2017-02-21

    申请号:US14630227

    申请日:2015-02-24

    CPC classification number: G06N99/005 G06Q10/04 G06Q10/067 H04L67/306

    Abstract: Methods and systems for modeling user arrival and choice in the context of off-street parking solutions. A first component models the arrival and duration of stay of users as a function of time, taking into account different user profiles (or “clusters”), captured by a latent variable. A second component provides a ranking function (for each user cluster), wherein the input features describing the “choice” constitute status variables associated different car park(s), and the output constitutes a preferred car park and a pricing scheme. The system simulates different user behaviors by assuming some standard groups of users will behave similarly. Groups of users or user profiles are learned automatically. The profiles are then employed as a key element for automatically learning a decision function of parking users, and automatically learning one decision function per profile.

    Abstract translation: 用于在路边停车场解决方案的背景下建模用户到达和选择的方法和系统。 第一个组件将用户的到达时间和持续时间作为时间的函数来模拟,考虑到潜在变量捕获的不同用户简档(或“集群”)。 第二组件提供排序功能(对于每个用户群集),其中描述“选择”的输入特征构成与不同停车场相关联的状态变量,并且输出构成优选的停车场和定价方案。 假设某些标准用户组的行为类似,系统会模拟不同的用户行为。 用户组或用户配置文件将自动学习。 然后将轮廓用作用于自动学习停车用户的决定功能的关键要素,并且每个轮廓自动学习一个决定功能。

    METHOD, SYSTEM AND PROCESSOR-READABLE MEDIA FOR ESTIMATING AIRPORT USAGE DEMAND
    6.
    发明申请
    METHOD, SYSTEM AND PROCESSOR-READABLE MEDIA FOR ESTIMATING AIRPORT USAGE DEMAND 有权
    用于估算机场使用需求的方法,系统和处理器可读介质

    公开(公告)号:US20160350770A1

    公开(公告)日:2016-12-01

    申请号:US14726887

    申请日:2015-06-01

    CPC classification number: G06Q30/0202 G06N7/005

    Abstract: Methods and systems for estimating airport usage demand. Airport parking traffic usage data and flight-time table data can be compiled with respect to an airport (or more than one airport). The airport parking traffic usage data and flight-time table data can be analyzed using an efficient time matching approach (e.g., a time segment matching algorithm). An efficient method to match passengers and flights is introduced. Passenger behavior can be estimated with respect to the airport based on the airport parking traffic usage data and flight-time table data.

    Abstract translation: 估算机场使用需求的方法和系统。 可以针对机场(或多于一个机场)编制机场停车交通使用数据和飞行时间表数据。 可以使用有效的时间匹配方法(例如,时间段匹配算法)来分析机场停车交通使用数据和飞行时间表数据。 介绍了一种匹配乘客和航班的有效方法。 可以根据机场停车交通使用数据和飞行时间表数据,估计机场的客运行为。

Patent Agency Ranking