Abstract:
There is described a surface layer or coating of a fluoropolymer. Dispersed in the fluoropolymer is a compound of the formula: wherein R1, R2, R3, and R4 each, independently of the others, are —H, alkyl, aryl, arylalkyl, or alkylaryl, R is a group of the formula —COOH, —COOM, —R5—COOH, —R5—COOM, —X—R5—COOH, or —X—R5—COOM wherein X and R5 are as defined herein, M is a cationic metal, A represents a saccharide monomer repeating unit having one or more R groups, B represents a saccharide monomer repeating unit having no R groups, m is an integer representing the number of repeating A units, and n is an integer representing the number of repeating B units.
Abstract:
An improved apparatus and method for forming images comprising Braille, raised print, regular print, or a combination is described. The architecture for the printing of Braille dots using marking material such as UV gel ink. The UV gel ink is deposited on a drum that has an array of closely packed raised features like mesas that are cup-shaped. The mesas on drum are filled with the UV gel ink and transferred to paper or another substrate. Partial curing can occur on the drum and the dots can be fully cured after transfer to the substrate. The mesas are shaped so that the dots take on a final shape consistent with usual Braille features.
Abstract:
There is described a surface layer or coating of a fluoropolymer. Dispersed in the fluoropolymer is a compound of the formula: wherein R1, R2, R3, and R4 each, independently of the others, are —H, alkyl, aryl, arylalkyl, or alkylaryl, R is a group of the formula —COOH, —COOM, —R5—COOH, —R5—COOM, —X—R5—COOH, or —X—R5—COOM wherein X and R5 are as defined herein, M is a cationic metal, A represents a saccharide monomer repeating unit having one or more R groups, B represents a saccharide monomer repeating unit having no R groups, m is an integer representing the number of repeating A units, and n is an integer representing the number of repeating B units.
Abstract:
An improved apparatus and method for forming images comprising Braille, raised print, regular print, or a combination is described. The architecture for the printing of Braille dots using marking material such as UV gel ink. The UV gel ink is deposited on a drum that has an array of closely packed raised features like mesas that are cup-shaped. The mesas on drum are filled with the UV gel ink and transferred to paper or another substrate. Partial curing can occur on the drum and the dots can be fully cured after transfer to the substrate. The mesas are shaped so that the dots take on a final shape consistent with usual Braille features.