Abstract:
An ink level sensing system that exhibits good sensitivity is described herein. The system includes a first probe having a first active surface, a second probe having a second active surface facing the first active surface, a memory in which data indicative of a conductivity curve and command instructions are stored, and a processor configured to execute the command instructions to associate a level of fluid in a reservoir with a first signal indicative of the electrical coupling between the first active surface and the second active surface with reference to the data indicative of a conductivity curve.
Abstract:
A printer architecture that enables a printer (or other media processing device) with an elongate foot print to be configured with media input and operator controls oriented at either a narrow end or a wide side thereof, that surface becoming the “front” of the unit. Controls and/or display(s) are mounted such that either the end or side orientation can be accommodated. The media input tray includes a separate assembly so that selection of the tray with access to end or side complements the user control panel in establishing the front of the machine. The combination of control/display mounting and oriented media tray structure integration with the print engine to establish which of the printer surfaces is considered the front allows for multiple orientations of the printer and greater flexibility to the customer.
Abstract:
An ink level sensing system that exhibits good sensitivity is described herein. The system includes a first probe having a first active surface, a second probe having a second active surface facing the first active surface, a memory in which data indicative of a conductivity curve and command instructions are stored, and a processor configured to execute the command instructions to associate a level of fluid in a reservoir with a first signal indicative of the electrical coupling between the first active surface and the second active surface with reference to the data indicative of a conductivity curve.
Abstract:
An ink recirculation assembly for an inkjet printer recovers purged ink for recycling. The ink recirculation assembly includes a porous pad configured to absorb ink from a printhead face by capillary action. The porous pad is operatively connected to an actuator, which is configured to move the porous pad to contact the printhead face to absorb ink from the printhead face. The actuator is further configured to move the porous pad to contact a heated member, which releases ink from the porous pad and enables the ink to flow into an ink receptacle for recycle or disposal.
Abstract:
An ink recirculation system has been developed to enable controlled release of ink collected in an ink receptacle into a printhead. The ink receptacle includes an indentation in a substantially planar surface and is configured to receive ink in the indentation from a printhead. The indentation has a shape that enables the ink receptacle to release ink at varying rates as a pivot angle of the ink receptacle is varied by a positioning system. The shape of the indentation enables the receptacle to dose ink into an ink reservoir in the printhead at known rates to control the amount of ink recycled to the printhead.
Abstract:
A release agent application system includes an image receiving member, a release agent applicator roller, a release agent pad, a release agent reservoir, and an actuator. The actuator operates the release agent applicator roller to move it between a resting position, where the roller absorbs release agent from the pad, and an application position, where the roller engages a surface of the image receiving member and to transfer release agent to the image receiving member.
Abstract:
A release agent application system includes an image receiving member, a release agent applicator roller, a release agent pad, a release agent reservoir, and an actuator. The actuator operates the release agent applicator roller to move it between a resting position, where the roller absorbs release agent from the pad, and an application position, where the roller engages a surface of the image receiving member and to transfer release agent to the image receiving member.
Abstract:
A printer architecture that enables a printer (or other media processing device) with an elongate foot print to be configured with media input and operator controls oriented at either a narrow end or a wide side thereof, that surface becoming the “front” of the unit. Controls and/or display(s) are mounted such that either the end or side orientation can be accommodated. The media input tray includes a separate assembly so that selection of the tray with access to end or side complements the user control panel in establishing the front of the machine. The combination of control/display mounting and oriented media tray structure integration with the print engine to establish which of the printer surfaces is considered the front allows for multiple orientations of the printer and greater flexibility to the customer.
Abstract:
An ink reclamation receptacle receives ink purged from an inkjet printing apparatus. Ink in the reclamation receptacle wets a porous membrane positioned in the reclamation receptacle, and flows into a flow channel. Negative pressure applied to a port that is placed in fluid communication with the flow channel withdraws ink from the flow channel for use in the inkjet printing apparatus, while ink wetting the pores in the membrane resists a flow of air into the flow channel.
Abstract:
An ink reclamation receptacle receives ink purged from an inkjet printing Apparatus. Ink in the reclamation receptacle wets a porous membrane positioned in the reclamation receptacle, and flows into a flow channel. Negative pressure applied to a port that is placed in fluid communication with the flow channel withdraws ink from the flow channel for use in the inkjet printing apparatus, while ink wetting the pores in the membrane resists a flow of air into the flow channel.