Abstract:
A flexible media integration system (10) includes a multifunction flexible media interface system (12). The interface system includes a plurality of flexible media input areas (22, 24, 26) for receiving flexible media (14), such as sheets of paper, from a plurality of associated input processors (16, 18, 20), such as printers or paper feeders. A plurality of flexible media output areas (32, 34) provide outputs to different associated flexible media output processors (36, 38), such as printers or finishers. The interface system also includes a sheet position sensing system (52) and a sheet transporting system (42). The transporting system provides selectable flexible media translation for selectably transporting flexible media from selected ones of the plurality of flexible media input areas to selected ones of the plurality of flexible media output areas so as to provide selectable flexible media feeding from selected flexible media input processors to selected flexible media output processors.
Abstract:
Methods for applying electrical stimuli to optical micro-electro-mechanical system (MEMS) devices are disclosed. Electrical stimuli may be applied to one or more released current carrying elements mounted above a supporting substrate biased to minimize electrostatic force between the one or more current released current carrying elements and the supporting substrate. Additionally, the electrical stimuli bias minimizes electrical potential difference between the one or more released current carrying elements and one or more non-current carrying elements mounted above the supporting substrate that come in contact or close proximity during operation of the one or more released current carrying elements.
Abstract:
An inkjet printing system for printing custom colors is provided. An ink mixing station is also provided. The printing system includes multiple ink channels, an ink cartridge sensor for each channel, and a controller. A method for printing custom colors in a printing system with multiple ink cartridges is provided. In another embodiment, the printing system includes an in situ mixed ink channel for receiving two or more ink supply dispensers and a controller. The in situ mixed ink channel includes an supply dispenser sensor and supply valve member for each supply dispenser, a mixing reservoir, a pump motor, and a print head. A method for printing custom colors using an in situ mixed ink channel is provided. The station includes an in situ mixed ink channel and a controller. A method for mixing custom color inks and filling inkjet ink containers in the station is provided.
Abstract:
A multifunction printed sheets interface system with plural sheet input areas for receiving printed sheets from plural printers, plural sheet outputs areas for plural outputs to different sheet processing systems, a sheet position sensing system, and a sheet transporting system providing selectable sheet translation from selected plural sheet input areas to selected plural sheet outputs areas so as to provide selectable sheet feeding from selected printers to selected sheet processing systems, and selectable sheet rotation of selected sheets and selectable sheet merging in a selected sheet sequence of sheets from plural printers. The sheet transporting system has a large planar area with a multiplicity of spaced apart independently operable variable sheet feeding direction and sheet velocity sheet transports, larger than the dimensions of any sheet to be fed thereon to allow simultaneous plural sheet variable transport thereon.
Abstract:
An optical micro-electro-mechanical system (MEMS) switch is disclosed. In a preferred embodiment the optical MEMS switch is used as an MnullN optical signal switching system. The optical MEMS switch comprises a plurality of optical waveguides formed on a cantilever beam platform for switching optical states wherein the state of the optical switch is changed by a system of drive and latch actuators. The optical MEMS device utilizes a latching mechanism in association with a thermal drive actuator for aligning the cantilever beam platform. In use the optical MEMS device may be integrated with other optical components to form planar light circuits (PLCs). When switches and PLCs are integrated together on a silicon chip, compact higher functionality devices, such as Reconfigurable Optical Add-Drop Multiplexers (ROADMs), may be fabricated.
Abstract:
A bistable microelectromechanical system (MEMS) based system comprises a micromachined beam having a first stable state, in which the beam is substantially stress-free and has a specified non-linear shape, and a second stable state. The curved shape may comprises a simple curve or a compound curve. In embodiments, the boundary conditions for the beam are fixed boundary conditions, bearing boundary conditions, spring boundary conditions, or a combination thereof. The system may further comprise an actuator arranged to move the beam between the first and second stable states and a movable element that is moved between a first position and a second position in accordance with the movement of the beam between the first and second stable states. The actuator may comprise one of a thermal actuator, an electrostatic actuator, a piezoelectric actuator and a magnetic actuator. The actuator may further comprise a thermal impact actuator or a zippering electrostatic actuator.
Abstract:
An optical micro-electro-mechanical system (MEMS) switch is disclosed. In a preferred embodiment the optical MEMS switch is used as an MnullN optical signal switching system. The optical MEMS switch comprises a plurality of optical waveguides formed on a shuttle for switching optical states wherein the state of the optical switch is changed by a system of drive and latch actuators. The optical MEMS switch utilizes a latching mechanism in association with a thermal drive actuator for aligning the waveguide shuttle. In use the optical MEMS switch may be integrated with other optical components to form planar light circuits (PLCs). When switches and PLCs are integrated together on a silicon chip, compact higher functionality devices, such as Reconfigurable Optical Add-Drop Multiplexers (ROADMs), may be fabricated.
Abstract:
A bistable microelectromechanical system (MEMS) based system comprises a micromachined beam having a first stable state, in which the beam is substantially stress-free and has a specified non-linear shape, and a second stable state. The curved shape may comprises a simple curve or a compound curve. In embodiments, the boundary conditions for the beam are fixed boundary conditions, bearing boundary conditions, spring boundary conditions, or a combination thereof. The system may further comprise an actuator arranged to move the beam between the first and second stable states and a movable element that is moved between a first position and a second position in accordance with the movement of the beam between the first and second stable states. The actuator may comprise one of a thermal actuator, an electrostatic actuator, a piezoelectric actuator and a magnetic actuator. The actuator may further comprise a thermal impact actuator or a zippering electrostatic actuator.