Abstract:
A display panel includes a driving circuit including N stages of cascaded shift registers, and each shift register includes: a first control part and a second control part; the second control part is configured to at least receive the signal of the second node, the signal of the third node, and a frequency control signal to generate an output signal; one shift register of the cascaded shift registers connected to a display unit in the first region is configured to receive the first frequency control signal, and one shift register of the cascaded shift registers connected to a display unit in the second region is configured to receive the second frequency control signal; a data refresh frequency of the display unit in the first region is F1, and a data refresh frequency in the second region is F2, F1
Abstract:
Provided are a display panel and a display device. The display panel includes a driver circuit including N stages of cascaded shift registers, where N≥2. A shift register includes a first control part and a second control part. The second control part includes a first control unit and a second control unit. The first control unit is configured to receive at least a signal of a preset node and a first output control signal and control a signal of a fourth node. During at least part of a time period during which the signal of the fourth node is a low level signal, each of a signal of the preset node and the first output control signal is a low level signal.
Abstract:
A display panel and a display device are provided. The display panel includes a driving circuit. The driving circuit includes N-level shift registers cascaded with each other, where N is greater than or equal to two. A shift register of the N-level shift registers includes: a fourth control unit, configured to receive a third voltage signal and a fourth voltage signal, and generate an output signal in response to a signal of a second node and a signal of a fourth node. The display panel further includes a pixel circuit, the pixel circuit includes a driving transistor, a working process of the pixel circuit includes a reset stage and a bias stage, where in the reset stage, the output signal of the driving circuit is a reset signal, and in the bias stage, the output signal of the driving circuit is a bias signal.
Abstract:
A display panel and a display device are provided. The display panel includes a driving circuit. The driving circuit includes N levels of shift registers cascaded with each other, where N 2. A shift register of the N levels of shift registers includes: a first control unit, configured to receive an input signal and control a signal of a first node in response to a first clock signal; a second control unit, configured to receive a first voltage signal and a second voltage signal, and control a signal of a second node in response to the signal of the first node, the first clock signal, and a second clock signal; and a third control unit, configured to receive the first voltage signal and the second voltage signal, and control an output signal in response to the signal of the second node and a signal of the third node.
Abstract:
A shift register circuit and its driving method, a display panel, and a display device are provided. The shift register circuit includes an input module, a first inverter, a second inverter, and an output module. The input module is connected to a first input terminal, a second input terminal, a third input terminal, and a first electrical-level terminal, to respond to signals from the second and third input terminal and control a voltage of a first node. In the first inverter, an input terminal is connected to the first node, and an output terminal is connected to a second node. In the second inverter, an input terminal is connected to the second node, and an output terminal is connected to the first node. The output module provides a signal of the fourth input terminal to an output terminal of the output module, and also provides a voltage of a first power terminal to the output terminal of the output module.
Abstract:
A touch control display panel and a display device are provided. The touch control display panel may comprise a plurality of touch driving electrodes arranged in a first direction; a touch sensing electrode array including a plurality of touch sensing electrode rows arranged in a second direction, wherein a touch sensing electrode row includes a first touch sensing electrode and a second touch sensing electrode arranged in the first direction. In a same touch sensing electrode row, a gap is provided between the first touch sensing electrode and the second touch sensing electrode, and the gap has a width of w1 in the first direction, the touch driving electrode disposed opposite to and over the gap between the first touch sensing electrode and the second touch sensing electrode has an electrode width of w2 in the first direction, and the gap width w1 is smaller than the electrode width w2.
Abstract:
Embodiments of the invention provide an array substrate, a display panel, a display device and a method for driving an array substrate. The array substrate includes gate lines, data lines, pixel TFTs and pixel electrodes and compensation capacitors on the array substrate; in every two adjacent rows of gate lines in at least a part of the rows on the array substrate, pixel TFTs connected with one gate line are a first type of TFTs, and pixel TFTs connected with an other gate line are a second type of TFTs; and in the at least a part of the rows, each of the pixel electrodes is arranged correspondingly with one of the compensation capacitors, and each of the compensation capacitors has one end electrically connected to the pixel electrode corresponding thereto and another end electrically connected to a gate line in a next row.
Abstract:
A display panel includes a base substrate, a first transistor and a second transistor. The first transistor and the second transistor are formed on the base substrate. The first transistor includes a first active layer, a first gate electrode, a first source electrode, and a first drain electrode. The first active layer includes silicon. The second transistor includes a second active layer, a second gate electrode, a second source electrode, and a second drain electrode. The second active layer includes an oxide semiconductor. A length of a channel region of the first transistor is L1. Along a direction perpendicular to the base substrate, a distance between the first gate electrode and the first active layer is D1. The first transistor further includes a third gate electrode. Along the direction perpendicular to the base substrate, a distance between the third gate electrode and the first active layer is D3, and D1
Abstract:
A display panel includes a driving circuit including N stages of cascaded shift registers, and each shift register includes: a first control part and a second control part; the second control part is configured to at least receive the signal of the second node, the signal of the third node, and a frequency control signal to generate an output signal; one shift register of the cascaded shift registers connected to a display unit in the first region is configured to receive the first frequency control signal, and one shift register of the cascaded shift registers connected to a display unit in the second region is configured to receive the second frequency control signal; a data refresh frequency of the display unit in the first region is F1, and a data refresh frequency in the second region is F2, F1
Abstract:
A display panel and a display device are provided. The display panel includes a driving circuit, and the driving circuit includes N-level shift registers cascaded with each other, where N is greater than or equal to two. A shift register of the N-level shift registers includes: a third control unit, configured to control a signal of a fourth node, the third control unit receives a first voltage signal and a second voltage signal, the first voltage signal is a high-level signal, and the second voltage signal is a low-level signal; and a fourth control unit, configured to generate an output signal, the fourth control unit receives a third voltage signal and a fourth voltage signal, and the third voltage signal is a high-level signal, and the fourth voltage signal is a low-level signal.