摘要:
A method according to one embodiment includes forming a high Ku first oxide magnetic layer above a substrate by sputtering; forming a low Ku second oxide magnetic layer above the first oxide magnetic layer by sputtering; forming an exchange coupling layer of CoCrPt-oxide above the second oxide magnetic layer; and forming a magnetic cap layer above the exchange coupling layer. Additional systems and methods are also presented.
摘要:
A magnetic storage medium according to one embodiment includes a substrate; a first oxide magnetic layer formed above the substrate; a second oxide magnetic layer formed above the first oxide magnetic layer; an exchange coupling layer formed above the second oxide magnetic layer, the exchange coupling layer comprising an oxide; and a magnetic cap layer formed above the exchange coupling layer. A method according to one embodiment includes forming a high Ku first oxide magnetic layer above a substrate by sputtering; forming a low Ku second oxide magnetic layer above the first oxide magnetic layer by sputtering; forming an exchange coupling layer of CoCrPt-oxide above the second oxide magnetic layer; and forming a magnetic cap layer above the exchange coupling layer. Additional systems and methods are also presented.
摘要:
A magnetic storage medium according to one embodiment includes a substrate; a first oxide magnetic layer formed above the substrate; a second oxide magnetic layer formed above the first oxide magnetic layer; an exchange coupling layer formed above the second oxide magnetic layer, the exchange coupling layer comprising an oxide; and a magnetic cap layer formed above the exchange coupling layer. A method according to one embodiment includes forming a high Ku first oxide magnetic layer above a substrate by sputtering; forming a low Ku second oxide magnetic layer above the first oxide magnetic layer by sputtering; forming an exchange coupling layer of CoCrPt-oxide above the second oxide magnetic layer; and forming a magnetic cap layer above the exchange coupling layer. Additional systems and methods are also presented.
摘要:
A method according to one embodiment includes forming a high Ku first oxide magnetic layer above a substrate by sputtering; forming a low Ku second oxide magnetic layer above the first oxide magnetic layer by sputtering; forming an exchange coupling layer of CoCrPt-oxide above the second oxide magnetic layer; and forming a magnetic cap layer above the exchange coupling layer. Additional systems and methods are also presented.
摘要:
A perpendicular magnetic recording medium including improvements to the recording layer (RL), exchange break layer (EBL), soft underlayer (SUL), overcoat (OC), adhesion layer (AL) and the combination of the layers. Advances in the RL include a cap layer. Improvements in the EBL include a multiple layer EBL.
摘要:
An improved structure for the construction of perpendicular recording media is disclosed. The structure includes a perpendicular recording layer with at least two oxide sublayers or a lower sublayer of a non-oxide. One structure includes an upper sublayer comprised of a Silicon-oxide, while a lower sublayer is comprised of a Tantalum-oxide. The structures provide for increased coercivity and corrosion resistance.
摘要:
An improved structure for the construction of perpendicular recording media is disclosed. The structure includes a perpendicular recording layer with at least two oxide sublayers or a lower sublayer of a non-oxide. One structure includes an upper sublayer comprised of a Silicon-oxide, while a lower sublayer is comprised of a Tantalum-oxide. The structures provide for increased coercivity and corrosion resistance.
摘要:
A perpendicular magnetic recording disk has a soft magnetic underlayer (SUL) that has high corrosion resistance as well as high moment. The material of the SUL is an alloy comprising Co, Fe, X, and Y; where X is Ta or Nb, Y is Zr or Hf, and the combined amount of X and Y present in the alloy is between about 10 and 20 atomic percent. The atomic ratio of Co to Fe in the alloy is between about 90:10 to 10:90, preferably between about 25:75 and 35:65. The SUL may be a single-layer SUL or a multilayer SUL formed of multiple soft magnetic layers separated by an interlayer film or films.
摘要:
A perpendicular magnetic recording disk has a soft magnetic underlayer (SUL) that has high corrosion resistance as well as high moment. The material of the SUL is an alloy comprising Co, Fe, X, and Y; where X is Ta or Nb, Y is Zr or Hf, and the combined amount of X and Y present in the alloy is between about 10 and 20 atomic percent. The atomic ratio of Co to Fe in the alloy is between about 90:10 to 10:90, preferably between about 25:75 and 35:65. The SUL may be a single-layer SUL or a multilayer SUL formed of multiple soft magnetic layers separated by an interlayer film or films.
摘要:
A perpendicular magnetic recording disk has a soft magnetic underlayer (SUL) that has high corrosion resistance as well as high moment. The material of the SUL is an alloy comprising Co, Fe, X, and Y; where X is Ta or Nb, Y is Zr or Hf, and the combined amount of X and Y present in the alloy is between about 10 and 20 atomic percent. The atomic ratio of Co to Fe in the alloy is between about 90:10 to 10:90, preferably between about 25:75 and 35:65. The SUL may be a single-layer SUL or a multilayer SUL formed of multiple soft magnetic layers separated by an interlayer film or films.