摘要:
Content adaptive detection of images having stand-out objects involves block variance-based detection and determining if an object includes a stand-out object. The images with a stand-out object are further processed to isolate an object of interest. The images without a detected stand-out object are further processed with a transition map-based detection method which includes generating a transition map. If an object portrait is determined from the transition map, then the image is further processed to isolate the object of interest.
摘要:
A method and apparatus for forming a demosaiced image from a color-filter-array (“CFA”) image is provided. The CFA image comprises a first set of pixels colored according to a first (e.g., a green) color channel, a second set of pixels colored according to a second (e.g., a red) color channel and a third set of pixels colored according to a third (e.g., blue) color channel. The method may include obtaining an orientation map, which includes, for each pixel of the color-filter-array image, an indicator of orientation of an edge bounding such pixel. The method may further include interpolating the first color channel at the second and third sets of pixels as a function of the orientation map so as to form a fourth set of pixels. The method may also include interpolating the second color channel at the first and third sets of pixels as a function of the orientation map and the fourth set of pixels; and interpolating the third color channel at the first and second sets of pixels as a function of the orientation map and the fourth set of pixels.
摘要:
A video system includes: analyzing video data, having a block; performing a transition change detection for determining a spatial intensity transition within the block; performing a block-wise similarity measurement on the block in the video data for identifying a blocking artifact; and filtering with a two dimensional cross filter every pixel in the block for removing the blocking artifact.
摘要:
Low complexity edge detection and DCT type selection method to improve the visual quality of H.264/AVC encoded video sequence is described. Encoding-generated information is reused to detect an edge macroblock. Variance and Mean Absolute Difference (MAD) of one macroblock shows a certain relationship that is able to be used to differentiate the edge macroblock and the non-edge macroblock. Also, the variance difference of neighbor macroblocks provides a hint for edge existence. Then, a block-based edge detection method uses this information. To determine the DCT type for each block, the detected edges are differentiated as visual obvious edge, texture-like edge, soft edge and strong edge. 8×8 DCT is used for texture-like edges and the 4×4 DCT is used for all the other edges. The result is an efficient and accurate edge detection and transform selection method.
摘要:
In one embodiment, a coding mode selection method is provided to improve the visual quality of an encoded video sequence. The coding mode is selected based on a human visual tolerance level. Picture data may be received for a video coding process. The picture data is then analyzed to determine human visual tolerance adjustment information. For example, parameters of a cost equation may be adjusted based on the human visual tolerance level, which may be a tolerance that is based on a distortion bound that the human visual system can tolerate. The picture data may be analyzed in places that are considered visually sensitive areas, such as trailing suspicious areas, stripping suspicious areas, picture boundary areas, and/or blocking suspicious areas. Depending on what kind of visually sensitive area is found in the picture data, a parameter in a cost equation may be adjusted based on different visual tolerance thresholds. The coding mode is then determined based on the cost.
摘要:
A computer-implemented method and apparatus for stain separation of a pathology image using stain vector analysis comprising converting an original image into an optical domain image, performing stain vector analysis on the optical domain image to obtain one or more stain vectors, deconvoluting the vectors adaptively to produce one or more separated stain images.
摘要:
A system for performing a scene representation procedure includes an image manager that processes source images from a given scene to define subscenes in the source images. The image manager creates an image understanding graph for each of the source images, and also creates a scene representation graph for each of the source images based upon the corresponding subscenes and certain image characteristics. The image manager further generates an integrated scene representation to represent all of the source images with a single representation. A processor of an electronic device controls the image manager to perform the scene representation procedure.
摘要:
A method and apparatus is described here that categorizes images by extracting regions and describing the regions with a 16-dimensional subscene feature vector, which is a concatenation of color, texture, and spatial feature vectors. By comparing the spatial feature vectors in images with similarly-obtained feature vectors in a Gaussian mixture based model pool (obtained in a subscene modeling phase), the images may be categorized (in a subscene recognition phase) with probabilities relating to each region or subscene. Higher probabilities are likelier correlations. The device may be a single or multiple core CPU, or parallelized vector processor for characterizing many images. The images may be photographs, videos, or video stills, without restriction. When used real-time, the method may be used for visual searching or sorting.
摘要:
A “Bokeh-Aji” image is one in which the region of interest is in focus and the background is out of focus. Detection of “Bokeh-Aji” type images and then isolation to the region of interest area in a low complexity way without any human intervention is beneficial. A set of tools for performing this task include SAD and high pass filtering based in-focus/out-of-focus area separation, in-focus/out-of-focus block distribution based “Bokeh-Aji” shot detection and region of interest isolation. By effectively integrating these tools together, the “Bokeh-Aji” images are successfully identified, and the region of interest area is successfully isolated.
摘要:
An apparatus and method for detecting “Object Portraits” (photographs or images with a stand-out object of interest or a set of stand-out objects of interest) is described. A set of tools has been developed for object of interest detection, including “Sunset-like” scene detection, pseudo-color saturation-based detection and object of interest isolation, block intensity based detection and object of interest isolation. By effectively integrating these tools together, the “Object Portrait” images and “Non-Object Portrait” images are successfully identified. Meaningful object of interest areas are thereby successfully isolated in a low complexity manner without human intervention.