摘要:
The present disclosure generally discloses a three-dimensional (3D) image reconstruction capability. The 3D image reconstruction capability may be configured to support reconstruction of a 3D image of a scene. The 3D image reconstruction capability may be configured to support reconstruction of a 3D image of a scene based on lensless compressive image acquisition performed using a lensless compressive camera having a single aperture and a set of multiple sensors. The reconstructed 3D image of a scene may include (1) image data indicative of a set of multiple two-dimensional (2D) images reconstructed based on the set of multiple sensors of the lensless compressive camera (which may be represented as images) and (2) depth information indicative of depths at points or areas of an overlapping portion of the multiple images reconstructed based on the set of multiple sensors of the lensless compressive camera (which may be represented as a depth map).
摘要:
The present disclosure generally discloses block-based lensless compressive image acquisition capabilities. The block-based lensless compressive image acquisition capabilities may include a block-based lensless camera. The block-based lensless camera may include a set of two or more image acquisition block configured to capture respective sets of image data (e.g., detector outputs or compressive measurements produced from detector outputs) for respective image portions of an image to be captured by the block-based lensless camera. The blocks of a block-based lensless camera may each include an aperture including a set of aperture elements, a sensor, and an isolation chamber disposed between the aperture and the sensor for directing light from the aperture to the sensor while preventing comingling of light of the block and light of other blocks.
摘要:
The present disclosure generally discloses a three-dimensional (3D) image reconstruction capability. The 3D image reconstruction capability may be configured to support reconstruction of a 3D image of a scene. The 3D image reconstruction capability may be configured to support reconstruction of a 3D image of a scene based on lensless compressive image acquisition performed using a lensless compressive camera having a single aperture and a set of multiple sensors. The reconstructed 3D image of a scene may include (1) image data indicative of a set of multiple two-dimensional (2D) images reconstructed based on the set of multiple sensors of the lensless compressive camera (which may be represented as images) and (2) depth information indicative of depths at points or areas of an overlapping portion of the multiple images reconstructed based on the set of multiple sensors of the lensless compressive camera (which may be represented as a depth map).
摘要:
An exemplary system includes at least one detector configured to provide an output based on a detected input. A plurality of input control elements control the input detected by the detector. A processor is configured to determine at least one point spread function based on a condition of the detector, a condition of the input control elements and a selected distance associated with the output. The controller is configured to generate data based on the output and the at least one point spread function, the generated data having at least one aspect
摘要:
An exemplary lensless compressive imaging device may include a micro mirror array having a plurality of mirror elements that are individually controllable for selectively directing light reflecting from the micro mirror array. A detector detects light reflected from at least one of the mirror elements. A processor provides compressive image information based on the detected light.
摘要:
An exemplary system includes at least one detector configured to provide an output based on a detected input. A plurality of input control elements control the input detected by the detector. A processor is configured to determine at least one point spread function based on a condition of the detector, a condition of the input control elements and a selected distance associated with the output. The controller is configured to generate data based on the output and the at least one point spread function, the generated data having at least one aspect
摘要:
The present invention relates to an apparatus and method for generating compressive measurements of video using spatial-temporal integration. The apparatus includes a detector configured to detect luminance values of a temporal video structure over a period of time based on optical data. The temporal video structure has pixels with a horizontal dimension and a vertical dimension with corresponding luminance values over the period of time. The apparatus also includes a spatial-temporal integrator unit configured to receive a plurality of measurement bases. Also, the spatial-temporal integrator unit is configured to apply each measurement basis to the temporal video structure and to sum resulting values for each measurement basis over the period of time to obtain a set of measurements. The summed values for each measurement basis is the set of measurements.
摘要:
The present invention relates to an apparatus and method for generating compressive measurements of video using spatial-temporal integration. The apparatus includes a detector configured to detect luminance values of a temporal video structure over a period of time based on optical data. The temporal video structure has pixels with a horizontal dimension and a vertical dimension with corresponding luminance values over the period of time. The apparatus also includes a spatial-temporal integrator unit configured to receive a plurality of measurement bases. Also, the spatial-temporal integrator unit is configured to apply each measurement basis to the temporal video structure and to sum resulting values for each measurement basis over the period of time to obtain a set of measurements. The summed values for each measurement basis is the set of measurements.
摘要:
FIG. 1 is a front view of the first image in a sequence for a display screen or portion thereof with graphical user interface, showing our new design; and, FIG. 2 is the second image thereof. The appearance of the transitional image sequentially transitions between the images shown in FIGS. 1-2. The process or period in which one image transitions to another image forms no part of the claimed design. The outermost broken line in the figures illustrates a portion of a display device that forms no part of the claimed design. The inner broken line next to the outermost broken line in the figures illustrates a portion of a display screen that forms no part of the claimed design. Similarly, the remaining broken lines represent features of the graphical user interface that form no part of the claimed design.