摘要:
The present invention provides a zero pollution recovery system for safely producing anhydrous fluorine hydride, comprising: a compartment, a reactor for producing fluorine hydride, and a water pool; the reactor is disposed in the compartment; the water pool is disposed at the bottom of the compartment; absorption hoods are respectively disposed above both ends of the reactor for absorbing fluorine hydride gas; at least two absorption towers mutually connected in series via pipes are disposed above the compartment; water pipes connected with the water pool are respectively disposed at the top and bottom of the absorption tower; and a cooler and a receiver connected with the water pool is disposed on the pipes. The present invention has the advantages of being able to control the range over which fluorine hydride can diffuse.
摘要:
The present invention provides a zero pollution recovery system for safely producing anhydrous fluorine hydride, comprising: a compartment, a reactor for producing fluorine hydride, and a water pool; the reactor is disposed in the compartment; the water pool is disposed at the bottom of the compartment; absorption hoods are respectively disposed above both ends of the reactor for absorbing fluorine hydride gas; at least two absorption towers mutually connected in series via pipes are disposed above the compartment; water pipes connected with the water pool are respectively disposed at the top and bottom of the absorption tower; and a cooler and a receiver connected with the water pool is disposed on the pipes. The present invention has the advantages of being able to control the range over which fluorine hydride can diffuse.
摘要:
The present invention provides a process for producing sponge titanium, which includes the following steps: Step A: placing aluminum into a resistance furnace, vacuum pumping, introducing inert gas, heating to molten aluminum; Step B: opening a reactor cover, adding a proper amount of potassium fluotitanate to a reactor, leakage detecting after closing the reactor cover, slowly raising the temperature to 150° C., vacuum pumping, and continuously heating to 250° C.; Step C: introducing inert gas into the reactor, continuously raising the temperature to 750° C., stirring uniformly; Step D: opening a valve to adjust the stirring speed, adding molten aluminum drops, and controlling the reaction temperature to 750° C. to 850° C.; Step E: opening the reactor cover, removing a stirring device, eliminating the upper layer of KAlF4 to obtain sponge titanium. The present invention has the beneficial effects of short process flow, low cost, environmental protection and harmlessness.
摘要:
The invention provides a method for preparing sponge titanium from sodium fluotitanate by aluminothermic reduction, comprising the following steps: a reaction step: aluminum and zinc are mixed under a vacuum state, and sodium fluotitanate is then added into the mixture for reaction; a separation step: the product resulting from the complete reaction stands still and is then introduced with inert gas, and NaF and AlF3 in upper-layer liquid phase are extracted; and a distillation step: Zn in the remaining product Zn—Ti is distilled out under a vacuum state, wherein the mass ratio of the aluminum to the zinc is 1:2 to 1:10.
摘要:
The invention provides a technological method for preparing sponge titanium from sodium fluotitanate raw material, comprising the following steps: step A: placing aluminum in an airtight resistance furnace, evacuating, introducing inert gas into the resistance furnace, and heating the aluminum to obtain molten aluminum; step B: opening a reactor cover, adding a proper amount of sodium fluotitanate into the reactor, closing the reactor cover, detecting leakage, slowly heating the reactor to 150° C., evacuating and continuously heating the reactor to 250° C.; step C: introducing inert gas into the reactor, continuously heating the reactor to 900° C., and stirring uniformly; step D: opening a valve, adjusting the stirring speed, dripping the molten aluminum, and controlling the temperature of reaction in a range from 900 to 1000° C.; and step E: opening the reactor cover, removing a stirring device out of the reactor, and eliminating NaAlF4 at upper layer to obtain sponge titanium.
摘要:
The invention provides a method for preparing sponge titanium from potassium fluotitanate by aluminothermic reduction, comprising the following steps: a reaction step: aluminum and zinc are mixed under a vacuum state, and the mixture is then reacted with potassium fluotitanate; a distillation step: KF, AlF3 and Zn generated by reaction are distilled out under a vacuum state; and a cooling step: sponge titanium is obtained subsequent to banking cooling. The invention further provides another method for preparing sponge titanium from potassium fluotitanate by aluminothermic reduction, comprising the following steps: a reaction step: aluminum and magnesium are mixed under a vacuum argon introduction condition, and the mixture is then reacted with potassium fluotitanate; a distillation step: KF, AlF3, MgF2 and Mg generated by reaction are distilled out under a vacuum state; and a cooling step: sponge titanium is obtained subsequent to banking cooling.
摘要:
Transform unit (TU) partition method and apparatus depending on the coding unit (CU) partition and prediction unit (PU) partition are disclosed. In one embodiment, the maximum TU size is restricted to the minimum of PU width and height, except for a 2N×2N coding unit with the 2N×2N partition type. In another embodiment, the maximum TU size equals to maximum of PU width and height, and the minimum TU size equals to minimum of the PU width and height, except for a 2N×2N coding unit with the 2N×2N partition type. In yet another embodiment, the maximum TU size is equal to the maximum of PU width and height, and the minimum TU size is equal to the minimum of PU width and height except for a 2N×2N CU with 2N×2N partition type.
摘要:
One or more continuous mappings are defined at a digital media encoder to convert input digital media data in a first high dynamic range format to a second format with a smaller dynamic range than the first format. The encoder converts the input digital media data to the second format with the smaller dynamic range using the continuous mapping and one or more conversion parameters relating to the continuous mapping. The encoder encodes the converted digital media data in a bitstream along with the conversion parameter(s). The conversion parameter(s) enable a digital media decoder to convert the converted digital media data back to the first high dynamic range format from the second format with the smaller dynamic range. Techniques for converting different input formats with different dynamic ranges are described.
摘要:
A method segments iris images from eye image data captured from non-cooperative subjects. The method includes receiving a frame of eye image data, and determining whether a pupil exists in the image by detecting glare areas in the image. Upon finding a pupil, subsequent images are processed with reference to the pupil location and a radius is calculated for the pupil. A k means clustering method and principal component analysis are used to locate pupil boundary points, which are fitted to a conic. Using the pupil boundary, an angular derivative is computed for each frame having a pupil and iris boundary points are fitted to a conic to identify an iris region between the iris boundary and the pupil boundary. Noise data are then removed from the iris region to generate an iris segment. A method for evaluating iris frame quality and iris image segmentation quality is also disclosed.
摘要翻译:一种方法从非合作对象捕获的眼图数据中分割虹膜图像。 该方法包括接收一帧眼图数据,并通过检测图像中的眩光区域来确定图像中是否存在瞳孔。 在找到瞳孔时,参考瞳孔位置处理随后的图像,并计算瞳孔的半径。 A k表示聚类方法,主成分分析用于定位适合于锥体的瞳孔边界点。 使用瞳孔边界,对于具有瞳孔的每个帧计算角度导数,并且将虹膜边界点拟合到圆锥,以识别虹膜边界和瞳孔边界之间的虹膜区域。 然后从虹膜区域移除噪声数据,以产生虹膜段。 还公开了一种用于评估虹膜框架质量和虹膜图像分割质量的方法。