Abstract:
There is provided a test apparatus for testing a device under test, which includes a voltage supplying section that supplies a voltage to the device under test through a wire, a first capacitor that is arranged between the wire and a common potential in series, a current detecting section that detects a current flowing through the wire at a location closer to the device under test than the first capacitor is, an integrating section that outputs an integration value obtained by integrating a difference between the current detected by the current detecting section and a predetermined reference current, and a judging section that judges whether the device under test is a pass or a failure based on the integration value.
Abstract:
Provided is a test apparatus that tests a device under test, comprising a power supply that generates supply power supplied to the device under test; a transmission path that transmits the supply power generated by the power supply to the device under test; a high-capacitance capacitor that is provided between the transmission path and a ground potential; a low-capacitance capacitor that has a lower capacitance than the high-capacitance capacitor and that is provided between the transmission path and the ground potential at a position closer to the device under test than the high-capacitance capacitor is to the device under test; an intermediate capacitor that is provided between the transmission path and the ground potential at a position between the high-capacitance capacitor and the low-capacitance capacitor; and a current measuring section that measures current flowing through the transmission path between the intermediate capacitor and the low-capacitance capacitor.
Abstract:
Provided is a power supply apparatus including a low pass filter that receives an output voltage of a current output section and allows a low frequency component with a frequency lower than a preset cutoff frequency to pass through; an excess voltage restricting load section that consumes an excess voltage restricting current, which is at least a portion of the output current from the current output section, when a load is turned on; and an excess voltage restricting control section that keeps the excess voltage restricting load section turned off when the output voltage of the current output section is less than an upper reference voltage, which is obtained by adding together a voltage output by the low pass filter and a preset upper offset voltage.
Abstract:
There is provided a current measuring apparatus that measures an electric current received by an electronic device from an input terminal, The current measuring apparatus includes a first voltage accumulator that accumulates a reference supply voltage that acts as a reference for a voltage being supplied to the electronic device during measuring electric currents, a first switch that connects a power supply to the first voltage accumulator to accumulate the reference supply voltage before measuring electric currents and disconnects the power supply from the first voltage accumulator during measuring electric currents, a current supplying section that supplies an electric current based on the reference supply voltage accumulated in the first voltage accumulator and a terminal voltage of the input terminal to the electronic device during measuring electric currents, and a first current measuring section that measures the supply current supplied to the electronic device.
Abstract:
There is provided a test apparatus for testing a device under test, which includes a voltage supplying section which supplies a voltage to the device under test through a wire, a first capacitor which is arranged between the wire and a common potential in series, a current detecting section which detects a current flowing through the wire at a location closer to the device under test than the first capacitor is, an integrating section which outputs an integration value obtained by integrating a difference between the current detected by the current detecting section and a predetermined reference current, and a judging section which judges whether the device under test is a pass or a failure based on the integration value.