摘要:
A method of manufacturing oriented Si steel containing Cu with high electric-magnetic property comprises: hot rolling slab; after first cold rolling, heating it to 800° C. or higher temperature and performing intermediate decarburization annealing in a protective atmosphere with PH2O/PH2 of 0.50˜0.88 for 3-8 minutes, to decrease carbon content of the steel plate to less than 30 ppm; then peening and acid-pickling to remove oxide of Fe on surface and to control oxygen content to lower than 500 ppm; secondary cold rolling to final thickness and coating separation agent in water-slurry form; drying to decrease water content to lower than 1.5%; high-temperature annealing in a protective atmosphere containing hydrogen with oxidation degree (PH2O/PH2) of 0.0001-0.2; finally applying a tension coating and leveling tension annealing.
摘要:
A method of manufacturing oriented Si steel containing Cu with high electric-magnetic property comprises: hot rolling slab; after first cold rolling, heating it to 800° C. or higher temperature and performing intermediate decarburization annealing in a protective atmosphere with PH2O/PH2 of 0.50˜0.88 for 3-8 minutes, to decrease carbon content of the steel plate to less than 30 ppm; then peening and acid-pickling to remove oxide of Fe on surface and to control oxygen content to lower than 500 ppm; secondary cold rolling to final thickness and coating separation agent in water-slurry form; drying to decrease water content to lower than 1.5%; high-temperature annealing in a protective atmosphere containing hydrogen with oxidation degree (PH2O/PH2) of 0.0001-0.2; finally applying a tension coating and leveling tension annealing.
摘要:
A manufacturing method of oriented Si steel with high electric-magnetic property comprises the following steps: smelting steel in converter or electric furnace; refining molten steel in two stages; continuous casting to obtain slab; hot rolling; first cold rolling; decarburizing annealing; secondary cold rolling; applying an annealing separator based on MgO and annealing at high temperature; applying an insulating coating and leveling tension annealing. The slab comprises (in wt %): C 0.020-0.050%, Si 2.6-3.6%, S 0.015-0.025%, Als 0.008-0.028%, N 0.005-0.020%, Mn 0.15-0.5%, Cu 0.3-1.2%, balance Fe and inevitable impurities, in which 10≦Mn/S≦20 and Cu/Mn≧2. The method could produce oriented Si steel with high magnetic induction intensity and low iron loss at low cost.
摘要:
A manufacturing method of oriented Si steel with high electric-magnetic property comprises the following steps: smelting steel in converter or electric furnace; refining molten steel in two stages; continuous casting to obtain slab; hot rolling; first cold rolling; decarburizing annealing; secondary cold rolling; applying an annealing separator based on MgO and annealing at high temperature; applying an insulating coating and leveling tension annealing. The slab comprises (in wt %): C 0.020-0.050%, Si 2.6-3.6%, S 0.015-0.025%, Als 0.008-0.028%, N 0.005-0.020%, Mn 0.15-0.5%, Cu 0.3-1.2%, balance Fe and inevitable impurities, in which 10≦Mn/S≦20 and Cu/Mn≧2. The method could produce oriented Si steel with high magnetic induction intensity and low iron loss at low cost.
摘要:
A method for detecting electromagnetic property of oriented silicon steel, the method comprises: measuring Euler angles of each of crystal grains in a specimen by use of metallographic etch-pit method; calculating orientation deviation angle θi (degree) of the crystal grain; combining area Si (mm2) of the crystal grain and correction coefficient X of element Si (X=0.1˜10 T/degree); correcting on the basis of the magnetic property B0 (saturation magnetic induction, T) of single-crystal material by using these parameters (θi, Si, X), formula for correcting is B 8 = - 0.015 × X × ∑ n = 1 i S i θ i ∑ n = 1 i S i + ( B 0 - 0.04 ) ( 1 ) obtaining electromagnetic property B8 of the oriented silicon steel by the above calculations. The present invention can implement detection of electromagnetic property of a specimen under the circumstances that there is no magnetizm measuring device or that magnetizm measuring devices cannot be used due to reasons such as weight and size of the specimen being too small or surface quality of the specimen being poor.
摘要:
A method for manufacturing a grain-oriented silicon steel having excellent magnetic performance, comprising steps as follows 1)conventionally melting and casting into a steel blank; 2) heating the steel blank and hot rolling the same into a strip of steel; 3)normalizing process; carrying out the normalizing process having two stages, wherein the strip is firstly heated to 1100˜1200° C., then cooled to 900˜1000° C. within 50˜200 s; and next, the strip is rapidly cooled in water having a temperature of 10-100; in this period, a tension force is applied to the strip of steel, the strip of steel in the temperature range of 900 ° C.˜500° C. has a stress of 1˜200N/mm2; 4)cold rolling, i.e. carrying out a primary cold rolling, or a double cold rolling with intermediate annealing; 5)carrying out primary recrystallizing annealing, then coating an annealing separator, whose main composition is MgO, to carry out final product annealing comprising secondary recrystallizing annealing and purifying annealing. The invention optimizes the content and distribution of martensite in the steel plate after normalization by adjusting the tension force applied to the steel plate while normalization transformation, so as to make the content of martensite in the range ensuring a better magnetic performance of the final product and to optimize the magnetic performance of final products.
摘要:
A method for detecting electromagnetic property of oriented silicon steel, the method comprises: measuring Euler angles of each of crystal grains in a specimen by use of metallographic etch-pit method; calculating orientation deviation angle θi (degree) of the crystal grain; combining area Si (mm2) of the crystal grain and correction coefficient X of element Si (X=0.1˜10 T/degree); correcting on the basis of the magnetic property B0 (saturation magnetic induction, T) of single-crystal material by using these parameters (θi, Si, X), formula for correcting is B 8 = - 0.015 × X × ∑ n = 1 i S i θ i ∑ n = 1 i S i + ( B 0 - 0.04 ) ( 1 ) ; obtaining electromagnetic property B8 of the oriented silicon steel by the above calculations. The present invention can implement detection of electromagnetic property of a specimen under the circumstances that there is no magnetism measuring device or that magnetism measuring devices cannot be used due to reasons such as weight and size of the specimen being too small or surface quality of the specimen being poor.
摘要翻译:一种用于检测取向硅钢的电磁特性的方法,该方法包括:使用金相蚀刻法测量样品中每个晶粒的欧拉角; 计算取向偏差角度;晶粒i(度); 晶粒的面积Si(mm2)和元素Si的校正系数X(X = 0.1〜10T /度); 通过使用这些参数(& i,Si,X),基于单晶材料的磁特性B0(饱和磁感应,T)进行校正,校正公式为B 8 = -0.015×X×Σn = 1我是我的老师 i≒Σn = 1 i S i +(B 0 - 0.04)(1); 通过上述计算得到取向硅钢的电磁特性B8。 本发明可以在没有磁测量装置的情况下实现试样的电磁特性的检测,或者由于试样的重量和尺寸或样品的表面质量等原因,不能使用磁性测定装置 穷人