摘要:
A fuel cell module includes in a casing: a fuel cell stack that is formed by stacking a plurality of unit cell; an oxidant gas distributing member that is disposed at a side surface, that extends in a stack direction of the unit cells, of the fuel cell stack that extends in a direction from one end to another end of each of the unit cells, and that supplies the oxidant gas to the another end of each unit cell after supplying the oxidant gas through the oxidant gas distributing member from the one end to the another end; a reformer disposed at the one end; and a combustion portion that is disposed between the one end and the reformer. The oxidant gas distributing member has a higher thermal conductivity at the one end side of the unit cells than at the another end side of the unit cells.
摘要:
A fuel cell module includes: in a casing, a fuel cell stack that is formed by stacking a plurality of unit cells; and an oxidant gas distributing member that is disposed at a side surface, that extends in a stack direction, of the fuel cell stack, that extends in a direction from one end to another end of each of the unit cells, and that supplies the oxidant gas along the oxidant gas distributing member from the one end to the another end to supply the oxidant gas to the another end of each unit cell. The oxidant gas distributing member includes a heat exchange restraint portion that restrains heat exchange between the unit cells and the oxidant gas in at least one of end portions of the fuel cell stack in the stack direction, in comparison with the heat exchange thereof in other portion in the fuel cell stack.
摘要:
A fuel cell module includes: in a casing, a fuel cell stack that is formed by stacking a plurality of unit cells; and an oxidant gas distributing member that is disposed at a side surface, that extends in a stack direction, of the fuel cell stack, that extends in a direction from one end to another end of each of the unit cells, and that supplies the oxidant gas along the oxidant gas distributing member from the one end to the another end to supply the oxidant gas to the another end of each unit cell. The oxidant gas distributing member includes a heat exchange restraint portion that restrains heat exchange between the unit cells and the oxidant gas in at least one of end portions of the fuel cell stack in the stack direction, in comparison with the heat exchange thereof in other portion in the fuel cell stack.
摘要:
A fuel cell module includes in a casing: a fuel cell stack that is formed by stacking a plurality of unit cell; an oxidant gas distributing member that is disposed at a side surface, that extends in a stack direction of the unit cells, of the fuel cell stack that extends in a direction from one end to another end of each of the unit cells, and that supplies the oxidant gas to the another end of each unit cell after supplying the oxidant gas through the oxidant gas distributing member from the one end to the another end; a reformer disposed at the one end; and a combustion portion that is disposed between the one end and the reformer. The oxidant gas distributing member has a higher thermal conductivity at the one end side of the unit cells than at the another end side of the unit cells.
摘要:
The fuel cell system 1 has a reformer 2 and a fuel cell 3. The reformer 2 has a reforming reaction channel 21 that generates a hydrogen-containing reformed gas Ga and a heat exchange channel 22 for heating. The fuel cell 3 has an anode channel 32 to which the hydrogen-containing reformed gas Ga is supplied, a cathode channel 33 to which an oxygen-containing gas Gc is supplied, and an electrolyte 31 formed between them. The electrolyte 31 is a laminate of a hydrogen-separating metal layer 311 and a proton conductor layer 312. The fuel cell system 1 has a cathode offgas line 46 for feeding the cathode offgas Oc discharged from the cathode channel 33 to the reforming reaction channel 21.
摘要:
A technology for preventing degradation of a hydrogen permeable metal layer in a fuel cell 210 is provided. A fuel cell system 200 including a fuel cell 210 with an anode which has the hydrogen permeable metal layer comprises a fuel cell controller 230 for controlling the operation status of the fuel cell system 200, a temperature parameter acquisition section for acquiring a temperature parameter of the hydrogen permeable metal layer, and a hydrogen permeable metal layer degradation prevention section which reduces the hydrogen partial pressure in an anode channel 212 for supplying fuel gas to the anode. If a temperature of the hydrogen permeable metal layer represented by the temperature parameter deviates from a specified temperature range, the fuel cell controller 230 cause the hydrogen permeable metal layer degradation prevention section to operate for preventing degradation of the hydrogen permeable metal layer.
摘要:
A technology for preventing degradation of a hydrogen permeable metal layer in a fuel cell 210 is provided. A fuel cell system 200 including a fuel cell 210 with an anode which has the hydrogen permeable metal layer comprises a fuel cell controller 230 for controlling the operation status of the fuel cell system 200, a temperature parameter acquisition section for acquiring a temperature parameter of the hydrogen permeable metal layer, and a hydrogen permeable metal layer degradation prevention section which reduces the hydrogen partial pressure in an anode channel 212 for supplying fuel gas to the anode. If a temperature of the hydrogen permeable metal layer represented by the temperature parameter deviates from a specified temperature range, the fuel cell controller 230 cause the hydrogen permeable metal layer degradation prevention section to operate for preventing degradation of the hydrogen permeable metal layer.
摘要:
A control device 7 obtains a reformed carbon quantity C supplied to a reform reaction flow channel 21 from a supplied fuel quantity Qf and also obtains a reformed water quantity S supplied to the reform reaction flow channel 21 from a generated power quantity W. Further, it obtains a oxygen consumed quantity consumed through power generation in a fuel cell 3 from the generated power quantity W, a supplied oxygen quantity to be supplied to a cathode flow channel 33 from a supplied cathode gas quantity Qc, and a reformed oxygen quantity O to be supplied to the reform reaction flow channel 21 based on a difference between the supplied oxygen quantity and the consumed oxygen quantity. By correcting a reformed carbon quantity C (delivery of a fuel pump 51) in accordance with the reformed oxygen quantity O, each of O/C and S/C is kept in a target value range.
摘要:
The fuel cell system according to the present invention comprises a reformer 12 for receiving a hydrocarbon fuel supply and generating a hydrogen-containing reformed gas by making use of a reforming reaction; a fuel cell assembly 14 for generating power after causing an anode to receive the reformed gas and causing a cathode to receive an oxygen-containing cathode gas; cathode off-gas supply flow path 20 for supplying a cathode off-gas, which is discharged from the cathode, to the reformer 12; and bypass flow path 24 for bypassing the cathode and directly supplying the cathode gas to the reformer 12 at the time of system warm-up.
摘要:
A fuel cell is made by laminating an anode channel 2 supplied with hydrogen or a hydrogen-containing gas gH, a cathode channel 3 supplied with oxygen or an oxygen-containing gas GO, and an electrolyte 4 arranged between the cathode channel and the anode channel. The electrolyte 4 is made by laminating a hydrogen separating metal layer for making hydrogen supplied to the anode channel 2 or hydrogen in a hydrogen-containing gas GH supplied to the anode channel 2 permeate; and a proton conductor layer made of ceramics, for establishing the hydrogen having permeated the hydrogen separating metal layer in a proton state and making it reach the cathode channel 3. In addition, the fuel cell has a coolant channel 5 for cooling the fuel cell 1. In the coolant channel 5, a low heat conducting section 55 having a heat conductivity smaller than that at a downstream side of a coolant C is formed at an inlet side of the coolant C.
摘要翻译:燃料电池是通过层压供给氢气或含氢气体的阳极通道2,供给氧气或含氧气体G O 2的阴极通道3, 并且设置在阴极通道和阳极通道之间的电解质4。 电解质4是通过层压氢分离金属层来制造提供给阳极通道2的氢气或供给到阳极通道2渗透物的含氢气体G H 3中的氢; 以及由陶瓷制成的质子导体层,用于建立以质子状态渗透氢分离金属层的氢,使其到达阴极流路3.此外,燃料电池具有用于冷却燃料电池1的冷却剂通道5 在冷却剂通道5中,在冷却剂C的入口侧形成导热率小于冷却剂C的下游侧的导热部55。