摘要:
A method and system for detection of native and bypass coronary ostia in a 3D volume, such as a CT volume, is disclosed. Native coronary ostia are detected by detecting a bounding box defining locations of a left native coronary ostium and a right native coronary ostium in the 3D volume using marginal space learning (MSL), and locally refining the locations of the left native coronary ostium and the right native coronary ostium using a trained native coronary ostium detector. Bypass coronary ostia are detected by segmenting an ascending aorta surface mesh in the 3D volume, generating a search region of a plurality of mesh points on the ascending aorta surface mesh based on a distribution of annotated bypass coronary ostia in a plurality of training volumes, and detecting the bypass coronary ostia by searching the plurality of mesh points in the search region.
摘要:
A method and system for providing detecting and classifying coronary stenoses in 3D CT image data is disclosed. Centerlines of coronary vessels are extracted from the CT image data. Non-vessel regions are detected and removed from the coronary vessel centerlines. The cross-section area of the lumen is estimated based on the coronary vessel centerlines using a trained regression function. Stenosis candidates are detected in the coronary vessels based on the estimated lumen cross-section area, and the significant stenosis candidates are automatically classified as calcified, non-calcified, or mixed.
摘要:
A method and system for providing detecting and classifying coronary stenoses in 3D CT image data is disclosed. Centerlines of coronary vessels are extracted from the CT image data. Non-vessel regions are detected and removed from the coronary vessel centerlines. The cross-section area of the lumen is estimated based on the coronary vessel centerlines using a trained regression function. Stenosis candidates are detected in the coronary vessels based on the estimated lumen cross-section area, and the significant stenosis candidates are automatically classified as calcified, non-calcified, or mixed.
摘要:
A method and system for detection of native and bypass coronary ostia in a 3D volume, such as a CT volume, is disclosed. Native coronary ostia are detected by detecting a bounding box defining locations of a left native coronary ostium and a right native coronary ostium in the 3D volume using marginal space learning (MSL), and locally refining the locations of the left native coronary ostium and the right native coronary ostium using a trained native coronary ostium detector. Bypass coronary ostia are detected by segmenting an ascending aorta surface mesh in the 3D volume, generating a search region of a plurality of mesh points on the ascending aorta surface mesh based on a distribution of annotated bypass coronary ostia in a plurality of training volumes, and detecting the bypass coronary ostia by searching the plurality of mesh points in the search region.
摘要:
A method and system for isolating the heart in a 3D volume, such as a cardiac CT volume, for patients with coronary artery bypasses is disclosed. An initial heart isolation mask is extracted from a 3D volume, such as a cardiac CT volume. The aortic root and ascending aorta are segmented in the 3D volume, resulting in an aorta mesh. The aorta mesh is expanded to include bypass coronary arteries. An expanded heart isolation mask is generated by combining the initial heart isolation mask with an expanded aorta mask defined by the expanded aorta mesh.
摘要:
A method and system for isolating the heart in a 3D volume, such as a cardiac CT volume, for patients with coronary artery bypasses is disclosed. An initial heart isolation mask is extracted from a 3D volume, such as a cardiac CT volume. The aortic root and ascending aorta are segmented in the 3D volume, resulting in an aorta mesh. The aorta mesh is expanded to include bypass coronary arteries. An expanded heart isolation mask is generated by combining the initial heart isolation mask with an expanded aorta mask defined by the expanded aorta mesh.
摘要:
A method and system for coronary artery detection in 3D cardiac volumes is disclosed. The heart chambers are segmented in the cardiac volume, and an initial estimation of a coronary artery is generated based on the segmented heart chambers. The initial estimation of the coronary artery is then refined based on local information in the cardiac volume in order to detect the coronary artery in the cardiac volume. The detected coronary artery can be extended using 3D dynamic programming.
摘要:
A method and system for automatic coronary stenosis detection in computed tomography (CT) data is disclosed. Coronary artery centerlines are obtained in an input cardiac CT volume. A trained classifier, such as a probabilistic boosting tree (PBT) classifier, is used to detect stenosis regions along the centerlines in the input cardiac CT volume. The classifier classifies each of the control points that define the coronary artery centerlines as a stenosis point or a non-stenosis point.
摘要:
A method and system for automatic coronary stenosis detection in computed tomography (CT) data is disclosed. Coronary artery centerlines are obtained in an input cardiac CT volume. A trained classifier, such as a probabilistic boosting tree (PBT) classifier, is used to detect stenosis regions along the centerlines in the input cardiac CT volume. The classifier classifies each of the control points that define the coronary artery centerlines as a stenosis point or a non-stenosis point.
摘要:
A method and system for coronary artery detection in 3D cardiac volumes is disclosed. The heart chambers are segmented in the cardiac volume, and an initial estimation of a coronary artery is generated based on the segmented heart chambers. The initial estimation of the coronary artery is then refined based on local information in the cardiac volume in order to detect the coronary artery in the cardiac volume. The detected coronary artery can be extended using 3D dynamic programming.