摘要:
Impedance-matched output driver circuits include a first totem pole driver stage and a second totem pole driver stage. The first totem pole driver stage includes at least one PMOS pull-up transistor and at least one NMOS pull-down transistor therein that are responsive to a first pull-up signal and a first pull-down signal, respectively. The second totem pole driver stage has at least one NMOS pull-up transistor and at least one PMOS pull-down transistor therein that are responsive to a second pull-up signal and second pull-down signal, respectively. The linearity of the output driver circuit is enhanced by including a first resistive element that extends between the first and second totem pole driver stages. The first resistive element has a first terminal, which is electrically coupled to drain terminals of the at least one PMOS pull-up transistor and the at least one NMOS pull-down transistor in the first totem pole driver stage, and a second terminal, which is electrically coupled to source terminals of the at least one NMOS pull-up transistor and the at least one PMOS pull-down transistor in the second totem pole driver stage.
摘要:
Impedance-matched output driver circuits include a first totem pole driver stage and a second totem pole driver stage. The first totem pole driver stage includes at least one PMOS pull-up transistor and at least one NMOS pull-down transistor therein responsive to a first pull-up signal and a first pull-down signal, respectively. The second totem pole driver stage has at least one NMOS pull-up transistor and at least one PMOS pull-down transistor therein responsive to a second pull-up signal and second pull-down signal, respectively. The linearity of the output driver circuit is enhanced by including a first resistive element that extends between the first and second totem pole driver stages. The first resistive element has a first terminal, which is electrically coupled to drain terminals of the at least one PMOS pull-up transistor and the at least one NMOS pull-down transistor in the first totem pole driver stage, and a second terminal, which is electrically coupled to source terminals of the at least one NMOS pull-up transistor and the at least one PMOS pull-down transistor in the second totem pole driver stage.
摘要:
An integrated circuit 2 with a memory 4 is provided with clock generator circuitry 18. The clock generator circuitry 18 operates in a first mode in which the memory clock signal mclk is generated in dependence upon both the rising edge and the falling edge of a source clock signal sclk. In a second mode of operation the clock generator circuitry 18 generates the memory clock signal mclk following the rising edge of the source clock signal sclk and then using a self-timing delay path 26 to trigger the falling edge of the memory clock signal mclk. The first mode of operation can be used during write operations and during read operations at the lowest one of a plurality of different dynamically selectable voltage levels of operation of the memory 4. The second mode of self-timed memory clock signal can be used during reads at operating voltages other than the lowest operating voltage.
摘要:
An integrated circuit 2 with a memory 4 is provided with clock generator circuitry 18. The clock generator circuitry 18 operates in a first mode in which the memory clock signal mclk is generated in dependence upon both the rising edge and the falling edge of a source clock signal sclk. In a second mode of operation the clock generator circuitry 18 generates the memory clock signal mclk following the rising edge of the source clock signal sclk and then using a self-timing delay path 26 to trigger the falling edge of the memory clock signal mclk. The first mode of operation can be used during write operations and during read operations at the lowest one of a plurality of different dynamically selectable voltage levels of operation of the memory 4. The second mode of self-timed memory clock signal can be used during reads at operating voltages other than the lowest operating voltage.